当前位置: 首页 > news >正文

[Python图像处理] 使用高通滤波器实现同态滤波

使用高通滤波器实现同态滤波

    • 同态滤波基础
    • 实现同态滤波
    • 相关链接

同态滤波基础

同态滤波是一种去除图像中乘性噪声的技术,常用于校正图像中的不均匀照明。根据图像形成的光照反射模型,图像 f(x,y)f(x,y)f(x,y) 可以由以下两个分量表征:

  • 入射到场景中的光源量
  • 场景中对象反射的光量

根据光照反射模型模型,图像中像素的强度(即对象上的点反射的光)是场景照明和场景中对象反射的结果。傅立叶变换在加法下是线性关联的,但在乘法下并不关联。因此,傅立叶方法仅在将噪声作为原始图像的附加项建模时,才适合从图像中去除噪声。
但是,如果图像的缺陷(例如,不均匀的照明)必须建模为乘法而非加法,则直接应用傅立叶变换并不合适。此时,我们便需要使用同态滤波:首先,通过使用对数将乘法转换为加法;然后,使用对数域中的 HPF 来删除低频照明分量,同时保留高频反射率分量。
同态滤波的基本步骤如下,输入图像为 f(x,y)f(x,y)f(x,y),滤波器的输出为 g(x,y)g(x,y)g(x,y)

同态滤波基本步骤

实现同态滤波

在本节中,我们将学习如何使用 Butterworth HPF 实现同态滤波器。

(1) 首先,导入所需 Python 库,并定义相关函数:

import cv2
import numpy as np
import matplotlib.pyplot as plt
from skimage.color import rgb2gray
from skimage.filters import sobel, threshold_otsudef dft2(im):freq = cv2.dft(np.float32(im), flags = cv2.DFT_COMPLEX_OUTPUT)freq_shift = np.fft.fftshift(freq)mag, phase = freq_shift[:,:,0], freq_shift[:,:,1]return mag + 1j*phasedef idft2(freq):real, imag = freq.real, freq.imagback = cv2.merge([real, imag])back_ishift = np.fft.ifftshift(back)im = cv2.idft(back_ishift, flags=cv2.DFT_SCALE)im = cv2.magnitude(im[:,:,0], im[:,:,1])return imdef butterworth(sz, D0, n=1):h, w = szu, v = np.meshgrid(range(-w//2,w//2), range(-h//2,h//2)) #, sparse=True)return 1 / (1 + (D0/(0.01+np.sqrt(u**2 + v**2)))**(2*n))

(2) 定义同态滤波函数,频域 H(u,v)H(u,v)H(u,v) 中的同态滤波器如下所示:

H(u,v)=(γH−γL)(11+(D0D(u,v))2n)+γLH(u,v)=(\gamma_H-\gamma_L)(\frac 1 {1+(\frac {D_0} {D(u,v)})^{2n}})+\gamma_L H(u,v)=(γHγL)(1+(D(u,v)D0)2n1)+γL

为了避免对数域中错误操作,在输入中添加常数 1,以确保对数的输入始终 ≥1,最后,从输出中减去 1

def homomorphic_filter(im, D0, g_l=0, g_h=1, n=1):im_log = np.log(im.astype(np.float)+1)im_fft = dft2(im_log)H = (g_h - g_l) * butterworth(im.shape, D0, n) + g_l#H = np.fft.ifftshift(H)im_fft_filt = H*im_fft#im_fft_filt = np.fft.ifftshift(im_fft_filt)im_filt = idft2(im_fft_filt)im = np.exp(im_filt.real)-1im = np.uint8(255*im/im.max())return im

(3) 读取输入图像(带有不均匀照明),将其转换为灰度图像(确保像素值在 0-255 范围内),然后通过调函数 homomorphic_filter() 应用同态滤波器。

其中,Butterworth 滤波器 n=2 阶的截止频率为 30γL\gamma_LγLγH\gamma_HγH 参数分别设置为 0.31

image = rgb2gray(plt.imread('1.png'))
image_filtered = homomorphic_filter(image, D0=30, n=2, g_l=0.3, g_h=1)

(4) 使用 sobel 滤波器从原始图像中提取边缘,使用 OTSU 最佳阈值创建二值图像如下:

image_edges = sobel(image)
image_edges = image_edges <= threshold_otsu(image_edges)

(5) 使用 sobel 滤波器通过从同态滤波器转换的图像中提取边缘:

image_filtered_edges = sobel(image_filtered)
image_filtered_edges = image_filtered_edges <= threshold_otsu(image_filtered_edges)

(6) 最后,绘制输入图像和使用同态滤波器获得的输出图像,以及提取的边缘:

plt.figure(figsize=(21,17))
plt.gray()
plt.subplots_adjust(0,0,1,0.95,0.01,0.05)
plt.subplot(221), plt.imshow(image), plt.axis('off'), plt.title('original image', size=10)
plt.subplot(222), plt.imshow(image_filtered), plt.axis('off'), plt.title('filtered image', size=10)
plt.subplot(223), plt.imshow(image_edges), plt.axis('off'), plt.title('original image edges', size=10)
plt.subplot(224), plt.imshow(image_filtered_edges), plt.axis('off'), plt.title('filtered image edges', size=10)
plt.show()

输出结果如下所示:

同态滤波结果

从上图中可以看出,所获得的输出图像中的光照更加均匀,从而可以看清楚原始图像中黑暗区域的细节/边缘。

相关链接

Python图像处理【1】图像与视频处理基础
Python图像处理【2】探索Python图像处理库
Python图像处理【3】Python图像处理库应用
Python图像处理【4】图像线性变换
Python图像处理【5】图像扭曲/逆扭曲
Python图像处理【7】采样、卷积与离散傅里叶变换

相关文章:

[Python图像处理] 使用高通滤波器实现同态滤波

使用高通滤波器实现同态滤波同态滤波基础实现同态滤波相关链接同态滤波基础 同态滤波是一种去除图像中乘性噪声的技术&#xff0c;常用于校正图像中的不均匀照明。根据图像形成的光照反射模型&#xff0c;图像 f(x,y)f(x,y)f(x,y) 可以由以下两个分量表征&#xff1a; 入射到…...

PyTorch深度学习:60分钟入门

PyTorch深度学习&#xff1a;60分钟入门 本教程的目的: 更高层级地理解PyTorch的Tensor库以及神经网络。训练一个小的神经网络来对图像进行分类。 本教程以您拥有一定的numpy基础的前提下展开 Note: 务必确认您已经安装了 torch 和 torchvision 两个包。 这是一个基于Pytho…...

C语言指针常见问题汇总

我们在学C语言时&#xff0c;指针是我们最头疼的问题之一&#xff0c;针对C语言指针&#xff0c;博主根据自己的实际学到的知识以及开发经验&#xff0c;总结了以下使用C语言指针时常见问题。 1、指针做函数参数 学习函数的时候&#xff0c;讲了函数的参数都是值拷贝&#xf…...

Coremail邮件系统全新上线存档邮箱功能

邮箱积累邮件太多&#xff0c;搜索起来又慢又麻烦&#xff01; 我的重要邮件忘记下载丢失了&#xff01;14天自动删除太难了&#xff01; 有没有可能重要邮件自动存档&#xff0c;解救一下“遗忘星”人&#xff1f; 在我们日常工作中&#xff0c;邮件是最经常使用的办公工具之一…...

Python绘图

1.二维绘图 a. 一维数据集 用 Numpy ndarray 作为数据传入 ply 1. import numpy as np import matplotlib as mpl import matplotlib.pyplot as pltnp.random.seed(1000) y np.random.standard_normal(10) print "y %s"% y x range(len(y)) print "x%s&q…...

【独家】华为OD机试 - 第K个最小码值的字母(C 语言解题)

最近更新的博客 华为od 2023 | 什么是华为od&#xff0c;od 薪资待遇&#xff0c;od机试题清单华为OD机试真题大全&#xff0c;用 Python 解华为机试题 | 机试宝典【华为OD机试】全流程解析经验分享,题型分享,防作弊指南&#xff09;华为od机试&#xff0c;独家整理 已参加机试…...

整数反转(python)

题目链接&#xff1a; https://leetcode.cn/problems/reverse-integer/ 题目描述&#xff1a; 给你一个 32 位的有符号整数 x &#xff0c;返回将 x 中的数字部分反转后的结果。 如果反转后整数超过 32 位的有符号整数的范围 [−231,231−1][−2^{31}, 2^{31} − 1][−231,231…...

【数据结构】二叉树与堆

文章目录1.树概念及结构1.1树的相关概念1.2树的结构2.二叉树概念及结构2.1相关概念2.2特殊的二叉树2.3二叉树的性质2.4二叉树的存储结构3.二叉树的顺序结构及实现3.1二叉树的顺序结构3.2堆的概念3.3堆的实现Heap.hHeap.c3.4堆的应用3.4.1 堆排序3.4.2 TOP-KOJ题最小K个数4.二叉…...

Git图解-常用命令操作-可视化

目录 一、前言 二、初始化仓库 2.1 设置用户名与邮箱 2.2 初始化仓库 三、添加文件 四、查看文件状态 五、查看提交日志 六、查看差异 七、版本回退 八、删除文件 九、分支管理 9.1 创建分支 9.2 切换分支 9.3 查看分支 9.4 合并分支 十、文件冲突 十一、转视…...

C语言-基础了解-20-typedef

typedef 一、typedef C 语言提供了 typedef 关键字&#xff0c;您可以使用它来为类型取一个新的名字。下面的实例为单字节数字定义了一个术语 BYTE&#xff1a; typedef unsigned char BYTE; 在这个类型定义之后&#xff0c;标识符 BYTE 可作为类型 unsigned char 的缩写&…...

Ubuntu系统升级16.04升级18.04

一、需求说明 作为Linux发行版中的后起之秀&#xff0c;Ubuntu 在短短几年时间里便迅速成长为从Linux初学者到实验室用计算机/服务器都适合使用的发行版&#xff0c;目前官网最新版本是22.04。Ubuntu16.04是2016年4月发行的版本&#xff0c;于2019年4月停止更新维护。很多软件支…...

CM6.3.2启用Kerberos(附问题解决)

基础准备支持JCE的jdk重新安装JCE的jdk(已正确配置跳过)删除/usr/java/下面的jdk,然后通过CM->管理->安全->安装Java无限制...重新安装后,配置Java(可选)主机->主机配置->搜java->Java主目录 配置路径主机->所有主机->设置->高级:Java配置Kerberos安…...

QML 动画(组合动画)

在QML中&#xff0c;可以把多个动画组合成一个单一的动画。 组合动画的类型&#xff1a; ParallelAnimation 动画同时进行&#xff08;并行&#xff09;SequentialAnimation 动画按照顺序执行&#xff08;顺序执行&#xff09;注意&#xff1a;将动画分组为“顺序动画”或“…...

【PHP代码注入】PHP代码注入漏洞

漏洞原理RCE为两种漏洞的缩写&#xff0c;分别为Remote Command/Code Execute&#xff0c;远程命令/代码执行PHP代码注入也叫PHP代码执行(Code Execute)(Web方面)&#xff0c;是指应用程序过滤不严&#xff0c;用户可以通过HTTP请求将代码注入到应用中执行。代码注入(代码执行)…...

Python 常用语句同C/C++、Java的不同

文章目录前言1. 数字 int2. 字符 string3. 列表 List4. 元组 tuple5. 字典 dictionary6. 集合 set7. 值类型变量与引用类型变量8. if elif else9. >、<、>、<、、!10. while11. for前言 本篇为本人前段时间的一个简单汇总&#xff0c;这里可能并不齐全&#xff0c…...

一把火烧掉了苹果摆脱中国制造的幻想,印度制造难担重任

这几年苹果不断推动印度制造&#xff0c;希望摆脱对中国制造的依赖&#xff0c;然而近期苹果在印度的一家代工厂发生大火却证明了苹果的这一计划遭受重大打击&#xff0c;印度制造根本就无法中国制造。一、印度制造屡屡发生幺蛾子苹果推动印度制造已有多年了&#xff0c;然而印…...

常用的 JavaScript 数组 API

以下是一些常用的 JavaScript 数组 API 的代码示例&#xff1a; 1、push() push(): 在数组末尾添加一个或多个元素&#xff0c;返回新的数组长度 const arr [1, 2, 3]; const newLength arr.push(4, 5); console.log(arr); // [1, 2, 3, 4, 5] console.log(newLength); //…...

海思3531a pjsip交叉编译

学习文档&#xff1a; PJSUA2 Documentation — PJSUA2 Documentation 1.0-alpha documentationhttps://www.pjsip.org/docs/book-latest/html/index.html ./configure --prefix/opensource/pjproject-2.12/build3531a \ --host/opt/hisi-linux/x86-arm/arm-hisi…...

《安富莱嵌入式周报》第305期:超级震撼数码管瀑布,使用OpenAI生成单片机游戏代码的可玩性,120通道逻辑分析仪,复古电子设计,各种运动轨迹函数源码实现

往期周报汇总地址&#xff1a;嵌入式周报 - uCOS & uCGUI & emWin & embOS & TouchGFX & ThreadX - 硬汉嵌入式论坛 - Powered by Discuz! 说明&#xff1a; 谢谢大家的关注&#xff0c;继续为大家盘点上周精彩内容。 视频版&#xff1a; https://www.bi…...

力扣-查找每个员工花费的总时间

大家好&#xff0c;我是空空star&#xff0c;本篇带大家了解一道简单的力扣sql练习题。 文章目录前言一、题目&#xff1a;1741. 查找每个员工花费的总时间二、解题1.正确示范①提交SQL运行结果2.正确示范②提交SQL运行结果3.正确示范③提交SQL运行结果4.正确示范④提交SQL运行…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

掌握 HTTP 请求:理解 cURL GET 语法

cURL 是一个强大的命令行工具&#xff0c;用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中&#xff0c;cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...