当前位置: 首页 > news >正文

机器学习 - 提高模型 (代码)

如果模型出现了 underfitting 问题,就得提高模型了。

Model improvement techniqueWhat does it do?
Add more layersEach layer potentially increases the learning capabilities of the model with each layer being able to learn some kind of new pattern in the data, more layers is often referred to as making your neural network deeper.
Add more hidden unitsMore hidden units per layer means a potential increase in learning capabilities of the model, more hidden units is often referred to as making your neural network wider.
Fitting for longer (more epochs)Your model might learn more if it had more opportunities to look at the data.
Changing the activation functionsSome data just can’t be fit with only straight lines, using non-linear activation functions can help with this.
Change the learning rateLess model specific, but still related, the learning rate of the optimizer decides how much a model should change its parameter each step, too much and the model overcorrects, too little and it doesn’t learn enough.
Change the loss functionLess model specific but still important, different problems require different loss functions. For example, a binary cross entropy loss function won’t work with a multi-class classification problem.
Use transfer learningTake a pretrained model from a problem domain similar to yours and adjust it to your own problem.

举个例子,代码如下:

class CircleModelV1(nn.Module):def __init__(self):super().__init__()self.layer_1 = nn.Linear(in_features = 2, out_features = 10)self.layer_2 = nn.Linear(in_features = 10, out_features = 10)self.layer_3 = nn.Linear(in_features = 10, out_features = 1)def forward(self, x):return self.layer_3(self.layer_2(self.layer_1(x)))model_1 = CircleModelV1().to("cpu")
print(model_1)loss_fn = nn.BCEWithLogitsLoss()
optimizer = torch.optim.SGD(model_1.parameters(), lr=0.1)torch.manual_seed(42)epochs = 1000X_train, y_train = X_train.to("cpu"), y_train.to("cpu")
X_test, y_test = X_test.to("cpu"), y_test.to("cpu")for epoch in range(epochs):### Training# 1. Forward pass y_logits = model_1(X_train).squeeze()y_pred = torch.round(torch.sigmoid(y_logits))  # logits -> probabilities -> prediction labels # 2. Calculate loss/accuracy loss = loss_fn(y_logits, y_train)acc = accuracy_fn(y_true = y_train, y_pred = y_pred)# 3. Optimizer zero grad optimizer.zero_grad()# 4. Loss backwards loss.backward()# 5. Optimizer step optimizer.step() ### Testing model_1.eval()with torch.inference_mode():# 1. Forward pass test_logits = model_1(X_test).squeeze()test_pred = torch.round(torch.sigmoid(test_logits))# 2. Calculate loss/accuracy test_loss = loss_fn(test_logits, y_test)test_acc = accuracy_fn(y_true = y_test, y_pred = test_pred)if epoch % 100 == 0:print(f"Epoch: {epoch} | Loss: {loss:.5f}, Accuracy: {acc:.2f}%")# 结果如下
CircleModelV1((layer_1): Linear(in_features=2, out_features=10, bias=True)(layer_2): Linear(in_features=10, out_features=10, bias=True)(layer_3): Linear(in_features=10, out_features=1, bias=True)
)
Epoch: 0 | Loss: 0.69528, Accuracy: 51.38%
Epoch: 100 | Loss: 0.69325, Accuracy: 47.88%
Epoch: 200 | Loss: 0.69309, Accuracy: 49.88%
Epoch: 300 | Loss: 0.69303, Accuracy: 50.50%
Epoch: 400 | Loss: 0.69300, Accuracy: 51.38%
Epoch: 500 | Loss: 0.69299, Accuracy: 51.12%
Epoch: 600 | Loss: 0.69298, Accuracy: 51.50%
Epoch: 700 | Loss: 0.69298, Accuracy: 51.38%
Epoch: 800 | Loss: 0.69298, Accuracy: 51.50%
Epoch: 900 | Loss: 0.69298, Accuracy: 51.38%

都看到这了,点个赞呗~

相关文章:

机器学习 - 提高模型 (代码)

如果模型出现了 underfitting 问题,就得提高模型了。 Model improvement techniqueWhat does it do?Add more layersEach layer potentially increases the learning capabilities of the model with each layer being able to learn some kind of new pattern in…...

数值代数及方程数值解:预备知识——二进制及浮点数

文章目录 二进制IEEE浮点数 本篇文章的前置知识:数学分析 二进制 命题:二进制转化为十进制 二进制的数字表示为 ⋯ b 2 b 1 b 0 . b − 1 b − 2 ⋯ \cdots b_2b_1b_0.b_{-1}b_{-2}\cdots ⋯b2​b1​b0​.b−1​b−2​⋯这等价于十进制下的 ⋯ b 2 2 …...

新数字时代的启示:揭开Web3的秘密之路

在当今数字时代,随着区块链技术的不断发展,Web3作为下一代互联网的概念正逐渐引起人们的关注和探索。本文将深入探讨新数字时代的启示,揭开Web3的神秘之路,并探讨其在未来的发展前景。 1. Web3的定义与特点 Web3是对互联网未来发…...

算法——动态规划:01背包

原始01背包见下面这篇文章:http://t.csdnimg.cn/a1kCL 01背包的变种:. - 力扣(LeetCode) 给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。 简化一…...

写作类AI推荐(二)

本章要介绍的写作AI如下: 火山写作 主要功能: AI智能创作:告诉 AI 你想写什么,立即生成你理想中的文章AI智能改写:选中段落句子,可提升表达、修改语气、扩写、总结、缩写等文章内容优化:根据全文…...

分寝室(20分)(JAVA)

目录 题目描述 输入格式: 输出格式: 输入样例 1: 输出样例 1: 输入样例 2: 输出样例 2: 题解: 题目描述 学校新建了宿舍楼,共有 n 间寝室。等待分配的学生中,有女…...

Spring 源码调试问题 ( List.of(“bin“, “build“, “out“); )

Spring 源码调试问题 文章目录 Spring 源码调试问题一、问题描述二、解决方案 一、问题描述 错误&#xff1a;springframework\buildSrc\src\main\java\org\springframework\build\CheckstyleConventions.java:68: 错误: 找不到符号 List<String> buildFolders List.of…...

Centos7安装RTL8111网卡驱动

方法一&#xff1a; // 安装pciutils # yum install -y pciutils // 查看pci设备信息 # lspci | grep -i Ethernet 09:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168/8411 PCI Express Gigabit Ethernet Controller (rev 03) // 上面看到是Re…...

吉时利KEITHLEY2460数字源表

181/2461/8938产品概述&#xff1a; Keithley 2460 高电流源表源测量单元 (SMU) 将先进的触摸、测试和发明技术带到您的指尖。Keithley 2460 将创新的图形用户界面 (GUI) 与电容式触摸屏技术相结合&#xff0c;使测试变得直观并最大限度地缩短学习曲线&#xff0c;从而帮助工程…...

数据库原理(含思维导图)

数据库原理笔记&#xff0c;html与md笔记已上传 1.绪论 发展历程 记住数据怎么保存&#xff0c;谁保存数据&#xff0c;共享性如何&#xff0c;独立性如何 人工管理阶段 数据不保存应用程序管理数据数据不共享数据不具有独立性 文件系统阶段 数据可以长期保存文件系统管…...

数据结构(六)——图

六、图 6.1 图的基本概念 图的定义 图&#xff1a;图G由顶点集V和边集E组成&#xff0c;记为G (V, E)&#xff0c;其中V(G)表示图G中顶点的有限非空集&#xff1b;E(G) 表示图G中顶点之间的关系&#xff08;边&#xff09;集合。若V {v1, v2, … , vn}&#xff0c;则用|V|…...

Android-AR眼镜屏幕显示

Android-AR眼镜 前提&#xff1a;Android手持设备 需要具备DP高清口 1、创建Presentation&#xff08;双屏异显&#xff09; public class MyPresentation extends Presentation {private PreviewSingleBinding binding;private ScanActivity activity;public MyPresentatio…...

蓝桥集训之货币系统

蓝桥集训之货币系统 核心思想&#xff1a;背包 #include <iostream>#include <cstring>#include <algorithm>using namespace std;const int N 30,M 10010;typedef long long LL;LL f[M];int w[N];int n,m;int main(){cin>>n>>m;for(int i1;i&…...

基于微信小程序的校园服务平台设计与实现(程序+论文)

本文以校园服务平台为研究对象&#xff0c;首先分析了当前校园服务平台的研究现状&#xff0c;阐述了本系统设计的意义和背景&#xff0c;运用微信小程序开发工具和云开发技术&#xff0c;研究和设计了一个校园服务平台&#xff0c;以满足学生在校园生活中的多样化需求。通过引…...

QT+Opencv+yolov5实现监测

功能说明&#xff1a;使用QTOpencvyolov5实现监测 仓库链接&#xff1a;https://gitee.com/wangyoujie11/qt_yolov5.git git本仓库到本地 一、环境配置 1.opencv配置 将OpenCV-MinGW-Build-OpenCV-4.5.2-x64文件夹放在自己的一个目录下&#xff0c;如我的路径&#xff1a; …...

【Python-Docx库】Word与Python的完美结合

【Python-Docx库】Word与Python的完美结合 今天给大家分享Python处理Word的第三方库&#xff1a;Python-Docx。 什么是Python-Docx&#xff1f; Python-Docx是用于创建和更新Microsoft Word&#xff08;.docx&#xff09;文件的Python库。 日常需要经常处理Word文档&#xf…...

吴恩达深度学习笔记:浅层神经网络(Shallow neural networks)3.6-3.8

目录 第一门课&#xff1a;神经网络和深度学习 (Neural Networks and Deep Learning)第三周&#xff1a;浅层神经网络(Shallow neural networks)3.6 激活函数&#xff08;Activation functions&#xff09;3.7 为什么需要非线性激活函数&#xff1f;&#xff08;why need a non…...

盘点最适合做剧场版的国漫,最后一部有望成为巅峰

最近《完美世界》动画官宣首部剧场版&#xff0c;主要讲述石昊和火灵儿的故事。这个消息一出&#xff0c;引发了很多漫迷的讨论&#xff0c;其实现在已经有好几部国漫做过剧场版&#xff0c;还有是观众一致希望未来会出剧场版的。那么究竟是哪些国漫呢&#xff0c;下面就一起来…...

Altium Designer许可需求分析

在电子设计的世界中&#xff0c;Altium Designer已成为设计师们的得力助手。然而&#xff0c;如何进行有效的许可需求分析&#xff0c;以确保软件的高效使用和企业的可持续发展&#xff1f;本文将带您了解如何进行Altium Designer的许可需求分析&#xff0c;让您在设计的道路上…...

[c++]类和对象常见题目详解

本专栏内容为&#xff1a;C学习专栏&#xff0c;分为初阶和进阶两部分。 通过本专栏的深入学习&#xff0c;你可以了解并掌握C。 &#x1f493;博主csdn个人主页&#xff1a;小小unicorn ⏩专栏分类&#xff1a;C &#x1f69a;代码仓库&#xff1a;小小unicorn的代码仓库&…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!

目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...