当前位置: 首页 > news >正文

生信数据分析——GO+KEGG富集分析

生信数据分析——GO+KEGG富集分析

目录

  • 生信数据分析——GO+KEGG富集分析
    • 1. 富集分析基础知识
    • 2. GO富集分析(Rstudio)
    • 3. KEGG富集分析(Rstudio)



1. 富集分析基础知识

1.1 为什么要做功能富集分析?
转录组学数据得到的基因非常多,面对大量的基因无法做到挨个研究其功能,因此为了研究基因所具有的功能,将部分功能相似的基因进行归类,这样具有相似功能的基因就被放在一起,构成了一个通路,从而减少工作量,并可以实现功能和表型相关联。

1.2 什么是富集分析?
富集分析是一种数据分析方法,主要用于理解基因集合或其他生物学实体在特定实验条件或生物学背景下的功能、通路或特定生物学过程的富集程度。其基本原理是,如果某个基因集合在特定条件下显著富集于某个功能类别或通路中,那么这些基因可能共同参与了某种特定的生物学过程或具有某种共同的功能特性

看上方的描述是不是感觉晦涩难懂,简单地说:所谓富集分析,本质上就是对分布的检验,如果基因分布集中在某一个区域(通路),则认为富集。

举个栗子: 做完差异后,得到了一堆差异基因,现在对这部分差异基因归归类,部分功能相似的基因可能被划分到了炎症通路上,有的基因被划分到了代谢通路上,这样就能大致知道筛选出来的差异基因与哪些功能相关。

1.3 富集分析有几种类型?

(1)GO富集分析
GO富集分析会从三个方面描述基因潜在的功能,分别是:

  • 分子功能(Molecular Function,MF)——即基因是否富集到分子相关的通路上
  • 细胞组分(Cellular Component,CC)——即基因定位在细胞的哪个位置上
  • 参与的生物过程(Biological Process,BP)——即基因参与哪些生物学过程

举个栗子:离子通道活性的GO term是GO:0005216,如果差异基因富集到该term上,那么所研究的基因可能与离子通道的激活与抑制有关联。

(2)KEGG富集分析
京都基因与基因组百科全书(KEGG)是了解高级功能和生物系统(如细胞、生物和生态系统)、用于研究通路的数据库之一。KEGG 通路分析是借助 KEGG 数据库(Kyoto Encyclopedia of Genes and Genomes),对所有鉴定到的基因进行通路注释,并分析这些基因参与的主要代谢和信号转导途径。

简单说: 使用KEGG数据库中通路的注释信息,将基因与已知的代谢通路和功能进行关联

(3)GSEA富集分析
(4)GSVA富集分析

在这个分析点中重点关注GO富集分析和KEGG富集分析,GSEA和GSVA会在后面分析点中介绍。



2. GO富集分析(Rstudio)

本项目以 ADAMTS2, ADAMTS4, AGRN, COL5A1, CTSB, FMOD, LAMB3, LAMB4, LOXL2, MATN1, MEP1A, MMP1, MMP2, NTN1, PTN, SPARCL1, SPON1, TGFBI, THBS4, TNC, VTN, ITGB6, PTPRF, UNC5A 为例展示GO富集分析过程
物种:人类(Homo sapiens)
R版本:4.2.2
R包:tidyverse,clusterProfiler,org.Hs.eg.db

废话不多说,代码如下:

设置工作空间:

rm(list = ls()) # 删除工作空间中所有的对象
setwd('/XX/XX/XX') # 设置工作路径
if(!dir.exists('./02_GO+KEGG_enrichment')){dir.create('./02_GO+KEGG_enrichment')
} # 判断该工作路径下是否存在名为02_GO+KEGG_enrichment的文件夹,如果不存在则创建,如果存在则pass
setwd('./02_GO+KEGG_enrichment/') # 设置路径到刚才新建的02_GO+KEGG_enrichment下

加载包:

library(clusterProfiler)
library(org.Hs.eg.db)
library(tidyverse)

导入要富集分析的基因

gene <- c('ADAMTS2', 'ADAMTS4', 'AGRN', 'COL5A1', 'CTSB', 'FMOD', 'LAMB3', 'LAMB4', 'LOXL2', 
'MATN1', 'MEP1A', 'MMP1', 'MMP2', 'NTN1', 'PTN', 'SPARCL1', 'SPON1', 'TGFBI', 'THBS4', 'TNC', 
'VTN', 'ITGB6', 'PTPRF', 'UNC5A')

设置数据库(注意:由于本项目分析的是人类基因,因此选用的是org.Hs.eg.db,如果是其他物种,需要用其他数据库

GO_database <- 'org.Hs.eg.db'  # GO是org.Hs.eg.db数据库

gene ID转换(因为导入的是基因名(symbol),但是用官方的编号,也就是ENTREZID会比较专业一些,因此首先要将基因名转换成官方ENTREZID

gene <- bitr(gene, fromType = 'SYMBOL', toType = 'ENTREZID', OrgDb = GO_database)

知识拓展: bitr函数不仅能将symbol转成ENTREZID,还能将ENTREZID转回symbol,甚至还能转换成其他形式,具体可以自行查看官方说明!

gene 如下图所示,第一列就是基因名(symbol),而第二列就是官方的ENTREZID编号

(注意:用bitr做转换的时候,很有可能会出现基因没有对应的ENTREZID编号,这是一个正常现象,不用过多焦虑,合理解释就行!)
在这里插入图片描述

GO富集分析并将富集分析结果转成数据框,enrichGO函数常用参数介绍如下

  • gene参数——是要输入的基因(一般用基因的ENTREZID编号)
  • OrgDb 参数——指定要用到的数据库,人类是:org.Hs.eg.db(当然还有别的物种,可自行查询)
  • keyType参数——设定读取的gene ID类型,本教程用的是ENTREZID编号所以用“ENTREZID”
  • ont参数——指定输出的通路类型,前面也说了GO富集分析会从bp,cc,mf三个层次描述基因的功能,这里用ALL就会直接包括这三个部分,当然也可以只指定一种类型。
  • pvalueCutoff 参数——设定p值阈值
  • qvalueCutoff 参数——设定q值阈值(这个q值就是矫正后的p值
  • readable参数——当readable设置为TRUE时,函数的输出会以一种更易于阅读和理解的方式呈现

enrichGO函数中比较关注的参数就是上述的这些,当然还有其他参数,如果想深入了解可自行查看官方说明文档

GO <- enrichGO(gene = gene$ENTREZID, # 导入基因的ENTREZID编号OrgDb = GO_database, # 用到的数据库(人类是:org.Hs.eg.db)keyType = "ENTREZID", # 设定读取的gene ID类型ont = "ALL", # (ont为ALL因此包括 Biological Process,Cellular Component,Mollecular Function三部分)pvalueCutoff = 0.5, # 设定p值阈值qvalueCutoff = 0.5, # 设定q值阈值readable = T)
go_res <- data.frame(GO) # 将GO结果转为数据框

go_res 如下图所示:

  • ONTOLOGY——指示该通路属于哪个类别,即生物过程(Biological Process, BP)、分子功能(Molecular Function, MF)还是细胞组分(Cellular Component, CC)
  • ID——这是GO通路的唯一标识符,用于在GO数据库中唯一地标识一个通路(可以理解成身份证)
  • Description——对通路的简单描述,通常通过这一列就得知该通路具有哪些功能
  • GeneRatio——是富集到该通路上的基因数量与所有输入到富集分析中的基因数量的比值。它反映了在特定基因集合中,与该通路相关的基因所占的比例。
  • BgRatio——是在整个背景数据集(通常是整个基因组或某个参考数据集)中,与该通路相关的基因数量与背景数据集中所有基因数量的比值。它反映了在整个基因组中,与该通路相关的基因所占的比例。
  • pvalue,p.adjust,qvalue——都是GO富集结果的显著性pvalue是常规p值,另外两个是调整后的p值,通常只需要pvalue < 0.05即可
  • geneID——是富集到该通路上的基因名
  • Count——是富集到该通路上的基因数目

在这里插入图片描述
go_res 添加新的一列——richFactor

  • RichFactor——是一个重要的指标,用于衡量差异表达的转录本中位于特定通路的转录本数目与所有有注释转录本中位于该通路的转录本总数的比值。

简单说:RichFactor越大,表示富集的程度越大,其评价富集的效果要比单纯的GeneRatio或Count要好

go_res <- mutate(go_res, richFactor = Count / as.numeric(sub("/\\d+", "", BgRatio)))

最后筛选p值显著的通路,并保存结果

go_res <- go_res[go_res$pvalue<0.05, ]write.csv(go_res, file = "./GO_res.csv")

3. KEGG富集分析(Rstudio)

分析与GO类似,这里同样是从头开始展示

本项目以 ADAMTS2, ADAMTS4, AGRN, COL5A1, CTSB, FMOD, LAMB3, LAMB4, LOXL2, MATN1, MEP1A, MMP1, MMP2, NTN1, PTN, SPARCL1, SPON1, TGFBI, THBS4, TNC, VTN, ITGB6, PTPRF, UNC5A 为例展示GO富集分析过程
物种:人类(Homo sapiens)
R版本:4.2.2
R包:tidyverse,clusterProfiler,org.Hs.eg.db

设置工作空间:

rm(list = ls()) # 删除工作空间中所有的对象
setwd('/XX/XX/XX') # 设置工作路径
if(!dir.exists('./02_GO+KEGG_enrichment')){dir.create('./02_GO+KEGG_enrichment')
} # 判断该工作路径下是否存在名为02_GO+KEGG_enrichment的文件夹,如果不存在则创建,如果存在则pass
setwd('./02_GO+KEGG_enrichment/') # 设置路径到刚才新建的02_GO+KEGG_enrichment下

加载包:

library(clusterProfiler)
library(org.Hs.eg.db)
library(tidyverse)

导入要富集分析的基因

gene <- c('ADAMTS2', 'ADAMTS4', 'AGRN', 'COL5A1', 'CTSB', 'FMOD', 'LAMB3', 'LAMB4', 'LOXL2', 
'MATN1', 'MEP1A', 'MMP1', 'MMP2', 'NTN1', 'PTN', 'SPARCL1', 'SPON1', 'TGFBI', 'THBS4', 'TNC', 
'VTN', 'ITGB6', 'PTPRF', 'UNC5A')

设置数据库(注意:这里和前面区别就在于要指定KEGG数据库,即hsa(人种)

GO_database <- 'org.Hs.eg.db'  # GO是org.Hs.eg.db数据库
KEGG_database <- 'hsa' # KEGG是hsa数据库

同样是gene ID转换

gene <- bitr(gene, fromType = 'SYMBOL', toType = 'ENTREZID', OrgDb = GO_database)

gene 如下图所示,第一列就是基因名(symbol),而第二列就是官方的ENTREZID编号
在这里插入图片描述
接下来就是KEGG富集分析,enrichGO函数常用参数介绍如下

  • gene参数——是要输入的基因(一般用基因的ENTREZID编号)
  • keyType参数——指定了基因ID的类型,用于匹配KEGG数据库中的条目
  • organism参数——指定了进行富集分析的目标物种的KEGG数据库,由于基因用的是人类的,所以前面设置的“hsa”。
  • pAdjustMethod参数——指定了用于调整p值的统计方法,以控制假阳性率
  • pvalueCutoff 参数——设定p值阈值
  • qvalueCutoff 参数——设定q值阈值(这个q值就是矫正后的p值
KEGG <- enrichKEGG(gene = gene$ENTREZID,keyType = "kegg",organism = KEGG_database,pAdjustMethod = "BH",pvalueCutoff = 0.5,qvalueCutoff = 0.5)

KEGG 如下图所示,是一个列表,里面在这里比较重要的是gene那里,可以看到那里不是常规的基因名,因此不能直接将KEGG的结果转换成数据框,多了一个基因ID转换的过程。
在这里插入图片描述
将KEGG结果中基因ID转成基因名,之后将KEGG结果转成数据框

kegg_res <- setReadable(KEGG, OrgDb = org.Hs.eg.db, keyType="ENTREZID")
kegg_res <- data.frame(kegg_res)

kegg_res 结果如下图所示:

  • ID——这是KEGG通路的唯一标识符,用于在KEGG数据库中唯一地标识一个通路(可以理解成身份证)
  • Description——对通路的简单描述,通常通过这一列就得知该通路具有哪些功能
  • GeneRatio——是富集到该通路上的基因数量与所有输入到富集分析中的基因数量的比值。它反映了在特定基因集合中,与该通路相关的基因所占的比例。
  • BgRatio——是在整个背景数据集(通常是整个基因组或某个参考数据集)中,与该通路相关的基因数量与背景数据集中所有基因数量的比值。它反映了在整个基因组中,与该通路相关的基因所占的比例。
  • pvalue,p.adjust,qvalue——都是GO富集结果的显著性pvalue是常规p值,另外两个是调整后的p值,通常只需要pvalue < 0.05即可
  • geneID——是富集到该通路上的基因名
  • Count——是富集到该通路上的基因数目

在这里插入图片描述
同样给kegg_res 添加新的一列——richFactor

kegg_res <- mutate(kegg_res , richFactor = Count / as.numeric(sub("/\\d+", "", BgRatio)))

最后筛选p值显著的通路,并保存结果

kegg_res <- kegg_res [kegg_res $pvalue<0.05, ]write.csv(kegg_res , file = "./KEGG_res.csv")


结语:

以上就是GO+KEGG富集分析的所有过程,如果有什么需要补充或不懂的地方,大家可以私聊我或者在下方评论。

如果觉得本教程对你有所帮助,点赞关注不迷路!!!


  • 目录部分跳转链接:零基础入门生信数据分析——导读

相关文章:

生信数据分析——GO+KEGG富集分析

生信数据分析——GOKEGG富集分析 目录 生信数据分析——GOKEGG富集分析1. 富集分析基础知识2. GO富集分析&#xff08;Rstudio&#xff09;3. KEGG富集分析&#xff08;Rstudio&#xff09; 1. 富集分析基础知识 1.1 为什么要做功能富集分析&#xff1f; 转录组学数据得到的基…...

微服务(基础篇-007-RabbitMQ)

目录 初识MQ(1) 同步通讯&#xff08;1.1&#xff09; 异步通讯&#xff08;1.2&#xff09; MQ常见框架&#xff08;1.3&#xff09; RabbitMQ快速入门(2) RabbitMQ概述和安装&#xff08;2.1&#xff09; 常见消息模型&#xff08;2.2&#xff09; 快速入门&#xff…...

汇总:五个开源的Three.js项目

Three.js 是一个基于 WebGL 的 JavaScript 库&#xff0c;它提供了一套易于使用的 API 用来在浏览器中创建和显示 3D 图形。通过抽象和简化 WebGL 的复杂性&#xff0c;Three.js 使开发者无需深入了解 WebGL 的详细技术就能够轻松构建和渲染3D场景、模型、动画、粒子系统等。 T…...

JavaScript(一)---【js的两种导入方式、全局作用域、函数作用域、块作用域】

一.JavaScript介绍 1.1什么是JavaScript JavaScript简称“js”&#xff0c;js与java没有任何关系。 js是一种“轻量级、解释型、面向对象的脚本语言”。 二.JavaScript的两种导入方式 2.1内联式 在HTML文档中使用<script>标签直接引用。 <script>console.log…...

部署云原生边缘计算平台kubeedge

文章目录 1、kubeedge架构2、基础服务提供 负载均衡器 metallb2.1、开启ipvc模式中的strictARP2.2、部署metalb2.2.1、创建IP地址池2.2.2、开启二层转发&#xff0c;实现在k8s集群节点外访问2.2.3、测试 3、部署cloudcore3.1、部署cloudcore3.2、修改cloudcore的网络类型 4、部…...

Java设计模式:单例模式详解

设计模式&#xff1a;单例详解 文章目录 设计模式&#xff1a;单例详解一、单例模式的原理二、单例模式的实现推荐1、饿汉模式2、静态内部类 三、单例模式的案例四、单例模式的使用场景推荐总结 一、单例模式的原理 单例模式听起来很高大上&#xff0c;但其实它的核心思想很简…...

Qt5.14.2 定时器黑魔法,一键唤醒延时任务

在图形界面程序的世界里&#xff0c;有这么一个需求无处不在:在特定的时间间隔后&#xff0c;执行一段特殊的代码。比如说30秒后自动保存文档、500毫秒后更新UI界面等等。作为资深Qt程序员&#xff0c;我相信各位一定也曾为实现这种"延时任务"而绞尽脑汁。今天&#…...

C++项目——集群聊天服务器项目(九)客户端异常退出业务

服务器端应检测到客户端是否异常退出&#xff0c;因此本节来实现客户端异常退出&#xff0c;项目流程见后文 一、客户端异常退出业务流程 &#xff08;1&#xff09;在业务模块定义处理客户端异常退出的函数 &#xff08;2&#xff09;集群聊天服务器项目(八&#xff09;提到…...

STM32CubeIDE基础学习-HC05蓝牙模块和手机通信

STM32CubeIDE基础学习-HC05蓝牙模块和手机通信 文章目录 STM32CubeIDE基础学习-HC05蓝牙模块和手机通信前言第1章 硬件连接第2章 工程配置第3章 代码编写3.1 手机指令控制LED 第4章 实验现象总结 前言 前面的文章学习了串口通过轮询和中断的简单使用方法&#xff0c;现在就来用…...

npm mongoose包下载冲突解决之道

我在新电脑下载完项目代码后,运行 npm install --registryhttps://registry.npm.taobao.org 1运行就报错&#xff1a; npm ERR! code ERESOLVE npm ERR! ERESOLVE unable to resolve dependency tree npm ERR! npm ERR! While resolving: lowcode-form-backend1.0.0 npm …...

26. UE5 RPG同步面板属性(二)

在上一篇&#xff0c;我们解析了UI属性面板的实现步骤&#xff1a; 首先我们需要通过c去实现创建GameplayTag&#xff0c;这样可以在c和UE里同时获取到Tag创建一个DataAsset类&#xff0c;用于设置tag对应的属性和显示内容创建AttributeMenuWidgetController实现对应逻辑 并且…...

五、postman基础使用案例

postman基础使用 相关案例【传递查询参数】【提交表单数据】【提交JSON数据】 注&#xff1a;postman⼀款⽀持调试和测试的⼯具&#xff0c;开发、测试⼯程师都可以使⽤。方法一般统一为&#xff1a;方法→请求头→请求体→断言 相关案例 【传递查询参数】 访问TPshop搜索商品的…...

Git合并利器:Vimdiff使用指南

使用 vimdiff 作为 Git 的合并工具确实可能会让新手感到困惑&#xff0c;但它是一个功能强大的工具&#xff0c;一旦掌握了它&#xff0c;就可以非常高效地进行代码合并和比较。以下是一个简短的教程&#xff0c;旨在帮助理解 vimdiff 的基本用法以及如何利用它来进行 Git 合并…...

阿里云2核4G服务器租用价格_30元3个月_165元一年_199元

阿里云2核4G服务器租用优惠价格&#xff0c;轻量2核4G服务器165元一年、u1服务器2核4G5M带宽199元一年、云服务器e实例30元3个月&#xff0c;活动链接 aliyunfuwuqi.com/go/aliyun 活动链接如下图&#xff1a; 阿里云2核4G服务器优惠价格 轻量应用服务器2核2G4M带宽、60GB高效…...

<QT基础(2)>QScrollArea使用笔记

项目需要设置单个检查的序列图像预览窗口&#xff0c;采用QScrollArea中加入QWidget窗口&#xff0c;每个窗口里面用Qlabel实现图像预览。 过程涉及两部分内容 引入QWidget 引入label插入图像&#xff08;resize&#xff09; 引入布局 组织 scrollArea内部自带Qwidget&#…...

springboot企业级抽奖项目业务四 (缓存预热)

缓存预热 为什么要做预热: 当活动真正开始时&#xff0c;需要超高的并发访问活动相关信息 必须把必要的数据提前加载进redis 预热的策略: 在msg中写一个定时任务 每分钟扫描一遍card_game表 把(开始时间 > 当前时间)&& (开始时间 < 当前时间1分钟)的活动及相…...

opejdk11 java 启动流程 java main方法怎么被jvm执行

java启动过程 java main方法怎么被jvm执行 java main方法是怎么被jvm调用的 1、jvm main入口 2、执行JLI_Launch方法 3、执行JVMInit方法 4、执行ContinueInNewThread方法 5、执行CallJavaMainInNewThread方法 6、创建线程执行ThreadJavaMain方法 7、执行ThreadJavaMain方法…...

link 样式表是否会阻塞页面内容的展示?取决于浏览器,edge 和 chrome 会,但 firefox 不会。

经过实测&#xff1a; 在 head 中 link 一个 1M 大小的样式表。设置网络下载时间大概为 10 秒。 edge 和 chrome 只有在下载完样式表后&#xff0c;页面上才会出现内容。而 firefox 可以直接先显示内容&#xff0c;然后等待样式表下载完成后再应用样式。 DOMContentLoaded 事…...

uniapp对接极光推送(国内版以及海外版)

勾选push&#xff0c;但不要勾选unipush 国内版 网址&#xff1a;极光推送-快速集成消息推送功能,提升APP运营效率 (jiguang.cn) 进入后台&#xff0c;并选择对应应用开始配置 配置安卓包名 以及ios推送证书&#xff0c;是否将生产证书用于开发环境选择是 ios推送证书…...

智慧城市数字孪生,综合治理一屏统览

现代城市作为一个复杂系统&#xff0c;牵一发而动全身&#xff0c;城市化进程中产生新的矛盾和社会问题都会影响整个城市系统的正常运转。智慧城市是应对这些问题的策略之一。城市工作要树立系统思维&#xff0c;从构成城市诸多要素、结构、功能等方面入手&#xff0c;系统推进…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇&#xff1a;Liunx环境下搭建PaddlePaddle 3.0基础环境&#xff08;Liunx Centos8.5安装Python3.10pip3.10&#xff09; 一&#xff1a;前言二&#xff1a;安装编译依赖二&#xff1a;安装Python3.10三&#xff1a;安装PIP3.10四&#xff1a;安装Paddlepaddle基础框架4.1…...