【蓝桥杯】矩阵快速幂
一.快速幂概述
1.引例
1)题目描述:
求A^B的最后三位数表示的整数,A^B表示:A的B次方。
2)思路:
一般的思路是:求出A的B次幂,再取结果的最后三位数。但是由于计算机能够表示的数字的范围是有限的,所以会产生“指数爆炸”的现象(即发生溢出现象)。
换一种思路来看本题:
取模运算的公式如下:
结论:
多个因子连续的乘积取模的结果等于每个因子取模后的乘积再取模的结果。
我们可以借助这个法则,只需要在循环乘积的每一步都提前进行“取模”运算,而不是等到最后直接对结果“取模”,也能达到同样的效果。
3)代码如下:
long long normalPower(long long a,long long b){long long result=1;for(int i=0;i<b;i++){result=(result*(a%1000))%1000;}return result%1000;
}
2.快速幂算法
1)思路:
快速幂算法能够帮我们算出指数非常大的幂。
传统算法时间复杂度高的原因是:指数很大,循环次数多。
核心思想:每一步都将指数分成两半,而相应的底数做平方运算。
2)代码:
//获取最后三位数
long long fastPower(long long base,long long power){long long re=1;while(power>0){if(power%2){//指数为奇数power--;//指数-1,将其变为偶数re=re*base%1000;}power/=2;base=base*base%1000;}return re;
}
通过位运算进行优化:
long long FastPower(long long base,long long power){long long re=1;while(power>0){if(power&1){re=re*base%1000;}power=power>>1;base=(base*base)%1000;}return re;
}
二.矩阵快速幂
矩阵乘法:
for(i=1;i<=n;i++)
{for(j=1;j<=n;j++){for(k=1;k<=n;k++){c[i][j] += a[i][k] * b[k][j];}}
}
矩阵快速幂:
仿照大数的快速幂
//矩阵快速幂
#include<iostream>
#include<cstring>
using namespace std;int M,n;struct node{int m[100][100];
}ans,res;//ans是结果,res为最初的方阵struct node mul(struct node A,struct node B){struct node C;int i,j,k;for(i=0;i<n;i++)for(j=0;j<n;j++)C.m[i][j]=0;for(i=0;i<n;i++){for(j=0;j<n;j++){for(k=0;k<n;k++){C.m[i][j]+=A.m[i][k]*B.m[k][j];}}}return C;
}void quickpower(){int i,j;//初始ans为单位矩阵for(i=0;i<n;i++)for(j=0;j<n;j++)if(i==j)ans.m[i][j]=1;elseans.m[i][j]=0;while(M>0){if(M&1){ans=mul(ans,res);}res=mul(res,res);M=M>>1;}
}
int main(){cin>>n;cin>>M;for(int i=0;i<n;i++)for(int j=0;j<n;j++)cin>>res.m[i][j];quickpower();for(int i=0;i<n;i++){for(int j=0;j<n;j++)cout<<ans.m[i][j]<<' ';cout<<endl;}return 0;
}
三.实战演练
1.题目描述:
2.问题分析:
转换为矩阵相乘的形式。
3.代码实现:
//斐波那契数列
#include<iostream>using namespace std;const int N=1e4;
const long long mod=1e9+7;
int T;
long long a[N];struct node{long long m[2][2];
}ans,res;//矩阵乘法
struct node mul(struct node a,struct node b){struct node c;c.m[0][0]=(a.m[0][0]*b.m[0][0]+a.m[0][1]*b.m[1][0])%mod;c.m[0][1]=(a.m[0][0]*b.m[0][1]+a.m[0][1]*b.m[1][1])%mod;c.m[1][0]=(a.m[1][0]*b.m[0][0]+a.m[1][1]*b.m[1][0])%mod;c.m[1][1]=(a.m[1][0]*b.m[0][1]+a.m[1][1]*b.m[1][1])%mod;return c;
}//矩阵快速幂
struct node matrixPower(struct node base,long long exp){struct node res={1,0,0,1};while(exp>0){if(exp&1){res=mul(res, base);}exp=exp>>1;base=mul(base, base);}return res;
}//求斐波那契数列第n项
long long f(long long n){struct node base={1,1,1,0};struct node res=matrixPower(base, n-1);return res.m[0][0];
}
int main(){ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);cin>>T;for(int i=0;i<T;i++){cin>>a[i];}for(int i=0;i<T;i++){cout<<f(a[i])<<'\n';}return 0;
}
相关文章:

【蓝桥杯】矩阵快速幂
一.快速幂概述 1.引例 1)题目描述: 求A^B的最后三位数表示的整数,A^B表示:A的B次方。 2)思路: 一般的思路是:求出A的B次幂,再取结果的最后三位数。但是由于计算机能够表示的数字…...

C语言使用STM32开发板手搓高端家居洗衣机
目录 概要 成品效果 背景概述 1.开发环境 2.主要传感器。 技术细节 1. 用户如何知道选择了何种功能 2.启动后如何进行洗衣 3.如何将洗衣机状态上传至服务器并通过APP查看 4.洗衣过程、可燃气检测、OLED屏显示、服务器通信如何并发进行 小结 概要 本文章主要是讲解如…...

【Hello,PyQt】QTextEdit和QSplider
PyQt5 是一个强大的Python库,用于创建图形用户界面(GUI)。其中,QTextEdit 控件作为一个灵活多用的组件,常用于显示和编辑多行文本内容,支持丰富的格式设置和文本操作功能。另外,QSlider 控件是一…...
【力扣】191.位 1 的个数、485.最大连续 1 的个数
191.位 1 的个数 题目描述 编写一个函数,输入是一个无符号整数(以二进制串的形式),返回其二进制表达式中 设置位 的个数(也被称为汉明重量)。 示例 1: 输入:n 11 输出࿱…...

蓝桥杯 java 承压计算
题目: 思路: 1:其中的数字代表金属块的重量(计量单位较大) 说明每个数字后面不一定有多少个0 2:假设每块原料的重量都十分精确地平均落在下方的两个金属块上,最后,所有的金属块的重量都严格精确地平分落在最底层的电子…...
leetcode268-Missing Number
这道题目要求缺失的数字,一般解决数组的问题,要么往排序数组,要么往双指针遍历这些方向上靠,要么往异或方向上靠,总之落点无非就只有这几个。我们要求缺失的数字,可以依次让1~n和数组元素进行异…...

【jenkins+cmake+svn管理c++项目】jenkins回传文件到svn(windows)
书接上文:创建一个项目 在经过cmakemsbuild顺利生成动态库之后,考虑到我一个项目可能会生成多个动态库,它们分散在build内的不同文件夹,我希望能将它们收拢到一个文件夹下,并将其回传到svn。 一、动态库移位—cmake实…...

数据结构·二叉树(2)
目录 1 堆的概念 2 堆的实现 2.1 堆的初始化和销毁 2.2 获取堆顶数据和堆的判空 2.3 堆的向上调整算法 2.4 堆的向下调整算法 2.4 堆的插入 2.5 删除堆顶数据 2.6 建堆 3 建堆的时间复杂度 3.1 向上建堆的时间复杂度 3.2向下建堆的时间复杂度 4 堆的排序 前言&…...
MATLAB算法实战应用案例精讲-【毕业季论文专用】人工智能视觉检测技术及其在实际应用中的挑战与前景
目录 摘要: 第一章:引言 1.1 研究背景 1.2 研究目的与意义...

Linux虚拟机环境搭建spark
Linux环境搭建Spark分为两个版本,分别是Scala版本和Python版本。 一、 安装Pyspark 本环境以 Python 环境为例。 1、下载spark 下载网址:https://archive.apache.org/dist/spark 下载安装包:根据自己环境选择合适版本,本环境…...

STL的string容器
string基本概念 string是C风格的字符串,本质上是一个类。 string 和 char* 的区别 char* 是一个指针; string是一个类,内部封装了 char* ,用来管理字符串,是一个 char* 型的容器。 特点 string内部封装了很多成员…...

半导体工艺技术
完整内容点击:【半导体工艺技术】...
acwing算法提高之图论--单源最短路的扩展应用
目录 1 介绍2 训练 1 介绍 本专题用来记录使用。。。。 2 训练 题目1:1137选择最佳线路 C代码如下, #include <iostream> #include <cstring> #include <algorithm> #include <queue>using namespace std;const int N 101…...
SQLServer数据库使用Function实现根据字段内容的拼音首字母进行数据查询
实现SQL首字母查询分两步,第一步建Function,第二步引用新建的Function。 1. 首先需要自定义一个查询的Function,详细SQL如下: ALTER function [dbo].[GetDataByPY](str nvarchar(4000)) returns nvarchar(4000) as begin decla…...

Linux——信号概念与信号产生方式
目录 一、概念 二、前台进程与后台进程 1.ctrlc 2.ctrlz 三、信号的产生方式 1.键盘输入产生信号 2.系统调用发送信号 2.1 kill()函数 2.2 raise()函数 2.3 abort()函数 3.异常导致信号产生 3.1 除0异常 3.2 段错误异常 4.软件条件产生信号 4.1 管道 4.2 闹钟…...

赋值语句还能当判断条件?涨芝士了!
赋值和条件看似是C语言中毫不相关的两个概念,虽然实际过程中我猜测不会有太多这种不太符合常理的情况出现,但是现在在学习的过程中,为了出题而出题总是会整出一些花活出来.....这很难不让人联想起高中时一些大佬为了彰显自己的数学天赋而自己…...

数据结构 - 算法效率|时间复杂度|空间复杂度
目录 1.算法效率 2.时间复杂度 2.1定义 2.2大O渐近表示法 2.3常见时间复杂度计算举例 3.空间复杂度 3.1定义 3.2常见空间复杂度计算举例 1.算法效率 算法的效率常用算法复杂度来衡量,算法复杂度描述了算法在输入数据规模变化时,其运行时间和空间…...

接口自动化之 + Jenkins + Allure报告生成 + 企微消息通知推送
接口自动化之 Jenkins Allure报告生成 企微消息通知推送 在jenkins上部署好项目,构建成功后,希望可以把生成的报告,以及结果统计发送至企微。 效果图: 实现如下。 1、生成allure报告 a. 首先在Jenkins插件管理中&#x…...

『Apisix安全篇』探索Apache APISIX身份认证插件:从基础到实战
🚀『Apisix系列文章』探索新一代微服务体系下的API管理新范式与最佳实践 【点击此跳转】 📣读完这篇文章里你能收获到 🛠️ 了解APISIX身份认证的重要性和基本概念,以及如何在微服务架构中实施API安全。🔑 学习如何使…...

【01-20】计算机网络基础知识(非常详细)从零基础入门到精通,看完这一篇就够了
【01-20】计算机网络基础知识(非常详细)从零基础入门到精通,看完这一篇就够了 以下是本文参考的资料 欢迎大家查收原版 本版本仅作个人笔记使用1、OSI 的七层模型分别是?各自的功能是什么?2、说一下一次完整的HTTP请求…...

(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...

Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
Oracle11g安装包
Oracle 11g安装包 适用于windows系统,64位 下载路径 oracle 11g 安装包...

QT开发技术【ffmpeg + QAudioOutput】音乐播放器
一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下,音视频内容犹如璀璨繁星,点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频,到在线课堂中知识渊博的专家授课,再到影视平台上扣人心弦的高清大片,音…...

【java面试】微服务篇
【java面试】微服务篇 一、总体框架二、Springcloud(一)Springcloud五大组件(二)服务注册和发现1、Eureka2、Nacos (三)负载均衡1、Ribbon负载均衡流程2、Ribbon负载均衡策略3、自定义负载均衡策略4、总结 …...