当前位置: 首页 > news >正文

深度学习算法概念介绍

前言

深度学习算法是一类基于人工神经网络的机器学习方法,其核心思想是通过多层次的非线性变换,从数据中学习表示层次特征,从而实现对复杂模式的建模和学习。深度学习算法在图像识别、语音识别、自然语言处理等领域取得了巨大的成功,成为人工智能领域的重要技术之一。

历史背景 深度学习算法的历史可以追溯到上世纪50年代,最早的神经网络模型是由Rosenblatt提出的感知机。然而,由于计算能力和数据量的限制,神经网络在接下来的几十年中并没有取得显著的进展。直到上世纪末和本世纪初,随着计算机硬件性能的提升和大规模数据集的涌现,深度学习算法开始迎来了快速发展。特别是在2012年,Hinton等人提出的深度学习模型在ImageNet图像识别竞赛中取得了巨大的成功,引发了深度学习算法的热潮。

算法思想 深度学习算法的核心思想是多层次的非线性变换。通常情况下,深度学习模型由输入层、多个隐藏层和输出层组成。每一层都包含多个神经元,通过权重和偏置对输入进行线性变换,并通过激活函数进行非线性变换。通过多层次的非线性变换,模型可以逐步学习复杂的特征表示,并实现对复杂模式的建模和学习。

原理 深度学习算法的原理基于反向传播算法和梯度下降算法。反向传播算法是一种基于链式法则的优化算法,通过计算损失函数对模型参数的梯度,然后沿着梯度的方向更新参数,从而实现模型的训练。梯度下降算法是一种基于迭代优化的方法,通过不断调整模型参数,使损失函数达到最小值。

应用 深度学习算法在图像识别、语音识别、自然语言处理等领域有着广泛的应用。在图像识别领域,深度学习模型已经能够达到甚至超过人类水平的识别精度;在语音识别领域,深度学习模型已经成为主流技术,并在语音助手、智能音箱等产品中得到了广泛应用;在自然语言处理领域,深度学习算法在机器翻译、文本分类、情感分析等任务中取得了显著的成果。

常见深度学习算法 

  1. 多层感知机(Multilayer Perceptron,MLP)

    • MLP是最简单的深度学习模型之一,由多个全连接的神经网络层组成,每个神经元与前一层的所有神经元相连接。MLP适用于处理结构化数据,如图像分类、文本分类等任务。
  2. 卷积神经网络(Convolutional Neural Network,CNN)

    • CNN是一种专门用于处理二维数据(如图像)的深度学习模型。它通过卷积层、池化层和全连接层等组件,可以有效地提取图像中的特征并进行分类、识别等任务。CNN在图像识别、目标检测、图像生成等领域取得了重大突破。
  3. 循环神经网络(Recurrent Neural Network,RNN)

    • RNN是一种专门用于处理序列数据(如文本、时间序列)的深度学习模型。RNN通过循环连接来处理序列数据,并具有记忆功能,能够捕捉序列中的长期依赖关系。然而,传统的RNN存在梯度消失和梯度爆炸等问题,因此衍生出了一些改进算法,如长短期记忆网络(LSTM)和门控循环单元(GRU)等。
  4. 生成对抗网络(Generative Adversarial Network,GAN)

    • GAN是由生成器和判别器组成的对抗性网络结构。生成器尝试生成看起来与真实数据相似的样本,而判别器则试图区分真实数据和生成数据。通过对抗训练,生成器不断改进生成样本的质量,从而使生成数据更接近真实数据。GAN在图像生成、图像修复、风格迁移等任务中取得了显著的成果。
  5. 自动编码器(Autoencoder,AE)

    • AE是一种无监督学习的深度学习模型,旨在学习数据的紧凑表示。它由编码器和解码器组成,编码器将输入数据映射到低维表示,解码器则将低维表示映射回原始数据空间。通过最小化重构误差,AE可以学习到数据的有效表示,从而可以用于数据压缩、降噪、特征提取等任务。

相关文章:

深度学习算法概念介绍

前言 深度学习算法是一类基于人工神经网络的机器学习方法,其核心思想是通过多层次的非线性变换,从数据中学习表示层次特征,从而实现对复杂模式的建模和学习。深度学习算法在图像识别、语音识别、自然语言处理等领域取得了巨大的成功&#xf…...

查找算法及查找常用数据结构总结

1.顺序表查找 基本方法: 设查找表以一维数组来存储,要求在此表中查找出关键字的值为x的元素的位置,若查找成功,则返回其位置(即下标),否则,返回一个表示元素不存在的下标&#xff0…...

大语言模型---强化学习

本文章参考,原文链接:https://blog.csdn.net/qq_35812205/article/details/133563158 SFT使用交叉熵损失函数,目标是调整参数使模型输出与标准答案一致,不能从整体把控output质量 RLHF(分为奖励模型训练、近端策略优化…...

前端三剑客 —— CSS (第二节)

目录 内容回顾: CSS选择器*** 属性选择器 伪类选择器 1):link 超链接点击之前 2):visited 超链接点击之后 3):hover 鼠标悬停在某个标签上时 4):active 鼠标点击某个标签时,但没有松开 5):fo…...

牛客NC31 第一个只出现一次的字符【simple map Java,Go,PHP】

题目 题目链接: https://www.nowcoder.com/practice/1c82e8cf713b4bbeb2a5b31cf5b0417c 核心 Map参考答案Java import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可*…...

软考系统架构设计师(摘抄)01

架构师承担的责任 系统架构师设计师是承担系统架构设计的核心角色,他不仅是连接用户需求和系统进一步设计与实现的桥梁,也是系统开发早期阶段质量保证的关键角色。系统架构师就是项目的总设计师,他是一个既需要掌控整体又需要洞悉局部瓶颈&a…...

5G无线接入网和接口协议

**部分笔记** 4.3无线协议架构 NR无线协议分为两个平面:用户面和控制面。 用户面(UP):协议栈及用户数据采用的协议 控制面(Control Plane,CP)协议栈即系统的控制信令传输采用的协议簇。 虚线标注的是信令数据的流向。一个UE在…...

【力扣刷题日记】1173.即时食物配送I

前言 练习sql语句,所有题目来自于力扣(https://leetcode.cn/problemset/database/)的免费数据库练习题。 今日题目: 1173.即时食物配送I 表:Delivery 列名类型delivery_idintcustomer_idintorder_datedatecustomer…...

2024年github之node排行榜top50

如果有帮助到您还请动动手帮忙点赞,关注,评论转发,感谢啦!💕💕💕😘😘😘 本文由Butterfly一键发布工具发布 2024年github之node排行榜top50 语言star项目名称…...

当我们在地址栏输入URL的时候浏览器发生了什么

URL 解析 是否合法 首先判断你输入的是一个合法的 URL 还是一个待搜索的关键词,并且根据你输入的内容进行自动完成、字符编码等操作。检查http缓存 DNS 查询 浏览器缓存 -> 操作系统缓存 -> 路由器缓存 -> DNS缓存 -> 根域名服务器查询 TCP 连接 …...

【研发日记】Matlab/Simulink开箱报告(十一)——Requirements Toolbox

目录 前言 Requirements Toolbox 编写需求 需求联接设计 需求跟踪开发进度 追溯性矩阵 分析和应用 总结 前言 见《开箱报告,Simulink Toolbox库模块使用指南(六)——S-Fuction模块(TLC)》 见《开箱报告&#x…...

Elastic 8.13:Elastic AI 助手中 Amazon Bedrock 的正式发布 (GA) 用于可观测性

作者:来自 Elastic Brian Bergholm 今天,我们很高兴地宣布 Elastic 8.13 的正式发布。 有什么新特性? 8.13 版本的三个最重要的组件包括 Elastic AI 助手中 Amazon Bedrock 支持的正式发布 (general availability - GA),新的向量…...

MFC 截取对话框生成图片、截取整个屏幕(可取黑白反色或者整体图片取反色)

HWND hwnd ::GetDesktopWindow();//截整个屏幕,用从这往下4句HDC hdc ::GetDC(hwnd);CDC dc;dc.Attach(hdc);CRect rc,rcw;GetWindowRect(&rcw);GetClientRect(&rc);//只截对话框,用这句//rc.SetRect(0, 0, GetSystemMetrics(SM_CXSCREEN), Ge…...

【LeetCode: 331. 验证二叉树的前序序列化 + DFS】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…...

【Consul】Linux安装Consul保姆级教程

【Consul】Linux安装Consul保姆级教程 大家好 我是寸铁👊 总结了一篇【Consul】Linux安装Consul保姆级教程✨ 喜欢的小伙伴可以点点关注 💝 前言 今天要把编写的go程序放到linux上进行测试Consul服务注册与发现,那怎么样才能实现这一过程&am…...

pytorch常用的模块函数汇总(1)

目录 torch:核心库,包含张量操作、数学函数等基本功能 torch.nn:神经网络模块,包括各种层、损失函数和优化器等 torch.optim:优化算法模块,提供了各种优化器,如随机梯度下降 (SGD)、Adam、RMS…...

素数的计数律:Π函数、歪斜数

相当多的数字! 一、说明 自从人类开始掌握最起码的算术概念以来,有一类数字一直处于最前沿——素数。素数定义简单,但难以捕捉,众所周知,素数是数学中一些最困难问题的罪魁祸首,让几代最优秀的数学家感到…...

图像识别在农业领域的应用

图像识别技术在农业领域的应用正在逐渐成熟,它通过分析处理拍摄的植物或农田的图像,为农业生产提供决策支持。以下是图像识别在农业中的一些关键应用: 病虫害检测:图像识别技术能够识别作物上的病斑、虫害或异常状况。通过比较高…...

【JavaSE】java刷题--数组练习

前言 本篇讲解了一些数组相关题目(主要以代码的形式呈现),主要目的在于巩固数组相关知识。 上一篇 数组 讲解了一维数组和二维数组的基础知识~ 欢迎关注个人主页:逸狼 创造不易,可以点点赞吗~ 如有错误,欢迎…...

预处理、编译、汇编、链接过程

预处理、编译、汇编、链接过程 预处理 引入头文件 #include 展开宏定义 #define 处理条件编译指令 #ifdef 删除注释 添加行号 在Linux下可以使用gcc -E命令把hello.c文件预处理成hello.i文件。windows这些操作都集成在编译器visual studio这些里面了。 编译 进行语法分…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了&#xff0c;要么要会员、要么写的乱七八糟。这里我整理一下&#xff0c;把问题说清楚并且给出代码&#xff0c;拿去用就行&#xff0c;照着葫芦画瓢。 问题 在继承QWebEngineView后&#xff0c;重写mousePressEvent或event函数无法捕获鼠标按下事…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献&#xff1a; stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下&#xff0c;文章也主…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

【C++】纯虚函数类外可以写实现吗?

1. 答案 先说答案&#xff0c;可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...