当前位置: 首页 > news >正文

(九)关系数据理论

  • 函数依赖:设R(U)是属性集U上的关系模式。X、Y是属性集U的子集。若对于R(U)的任意一个可能的关系r,r中不可能存在两个元组在X上的属性值相等,而在Y上的属性值不等,则称X函数确定Y或Y函数依赖于X,记作X→Y。(即只要X 上的属性值相等,Y上的值一定相等)。
  • 完全函数依赖:(full)在R(U)中,如果X→Y,并且对于X 的任何一个真子集X',都有,则称Y对X完全函数依赖,记作。(即只要X删去一个属性,就不再决定Y,即为完全函数依赖
  • 部分函数依赖:(partial)若X→Y,但Y不完全函数依赖于X,则称Y 对X 部分函数依赖,记作:
  • 传递函数依赖:在R(U)中,如果则称Z对X传递函数依赖。(即只要两个依赖关系中的三个属性组不互相完全包含,Y对X不函数依赖,Z对X不函数依赖,就构成传递函数依赖)
  • 候选码:设K为R<U,F>中的属性或属性组合,若,则K为R的候选码。
  • 主码:若候选码多于一个,则选定其中的一个为主码。
  • 外码:关系模式R中属性或属性组X并非是R的码,但X是另一个关系模式的码,则称X是R的外部码,也称外码。
  • 全码:整个属性组是码,称为全码。
  • 主属性:包含在某一候选码中的一个属性称为主属性。
  • 非主属性:不包含在任一候选码中的一个属性。也即除主属性外的其他属性称为非主属性。
  • 超键: 在关系中能唯一标识元组的属性集称为关系模式的超键,可以包含非主属性。
  • 1NF:关系模式R 的每一个分量是不可再分的数据项。         (即关系模式最起码的要求)
  • 2NF:关系模式R∈1NF,且每一个非主属性完全函数依赖于码,(即进一步消除了非主属性对候选码的部分函数依赖。)
  • 3NF:关系模式R<U,F>中不存在这样的码X、属性组Y及非主属性A,且,则符合第三范式。(即进一步消除了非主属性对侯选码的传递函数依赖
  • BCNF:关系模式 R<U,F> ∈ 1NF, X→Y且Y不是X的子集时,X必含候选码。即没有不依赖于候选键的函数依赖存在。(即进一步消除了主属性对候选码的部分和传递函数依赖)
  • 多值依赖:设R(U)是属性集U上的一个关系模式。X,Y,Z是U的子集,并且关系模式R(U)中多值依赖x→→y成立,当且仅当对R(U)的任一关系r,给定的一对(x,z)值,有一组y的值,这组值仅仅决定于X值而与Z值无关。
  • 4NF:关系模式每如果对于R 的每个非平凡多值依赖X→→Y(Y不是X 的子集,Z=U-X-Y不为空),X 都含有码。 (即进一步消除了非主属性对候选键以外属性的多值依赖)
  • 逻辑蕴涵:设F是关系模式R(U)中的一个函数依赖集合,X,  Y是R的属性子集,如果从F中的函数依赖能够推导出X→Y,则称F逻辑蕴涵X→Y,  或称X→Y是F的逻辑蕴涵。
  • 闭包:被F逻辑蕴涵的所有函数依赖集合称为F的闭包(Closure),记作 F+。 说明:若F+=F, 则说F是一个全函数依赖族(函数依赖完备集)。

9.1问题的提出

9.2规范化理论

 9.2.1函数依赖

不能消去任何属性的决定因素,符合完全函数依赖。

9.2.2范式

 

1NF 

2NF 

3NF 

 BCNF

多值依赖 

4NF 

 9.2.3数据依赖的公理化系统 

9.2.4模式分解

9.2.4.1无损连接

 

 9.2.4.2保持依赖

相关文章:

(九)关系数据理论

函数依赖&#xff1a;设R(U)是属性集U上的关系模式。X、Y是属性集U的子集。若对于R(U)的任意一个可能的关系r&#xff0c;r中不可能存在两个元组在X上的属性值相等&#xff0c;而在Y上的属性值不等&#xff0c;则称X函数确定Y或Y函数依赖于X&#xff0c;记作X→Y。(即只要X 上的…...

【经验分享】Ubuntu下如何解决问题arm-linux-gcc:未找到命令

【经验分享】Ubuntu下如何解决问题arm-linux-gcc&#xff1a;未找到命令 前言问题分析解决方法 前言 在编译过程中发现一个问题&#xff0c;明明之前安装了gcc-4.6版本&#xff0c;版本信息都是正常显示的&#xff0c;刚安装上去的时候也是可以用的。但不知道什么原因突然不能…...

【算法刷题day10】Leetcode:232.用栈实现队列、225. 用队列实现栈

文章目录 Leetcode 232.用栈实现队列解题思路代码总结 Leetcode 225. 用队列实现栈解题思路代码总结 stack、queue和deque对比 草稿图网站 java的Deque Leetcode 232.用栈实现队列 题目&#xff1a;232.用栈实现队列 解析&#xff1a;代码随想录解析 解题思路 一个栈负责进&a…...

sql注入详解

ps:简单说下这里只写了我能理解的明白的&#xff0c;后面的二阶注入&#xff0c;堆叠注入没写 手工sql注入 1.存在sql注入本质上就是数据库过滤的不严格或者未进行过滤&#xff0c;1 and 11&#xff0c;返回正常&#xff0c;1 and 12 返回不正常&#xff0c;说明带到数据库里面…...

[蓝桥杯 2022 省 B] 李白打酒加强版

题目链接 [蓝桥杯 2022 省 B] 李白打酒加强版 题目描述 话说大诗人李白&#xff0c;一生好饮。幸好他从不开车。 一天&#xff0c;他提着酒壶&#xff0c;从家里出来&#xff0c;酒壶中有酒 2 2 2 斗。他边走边唱&#xff1a; 无事街上走&#xff0c;提壶去打酒。 逢店加一倍…...

【检索增强】Retrieval-Augmented Generation for Large Language Models:A Survey

本文简介 1、对最先进水平RAG进行了全面和系统的回顾&#xff0c;通过包括朴素RAG、高级RAG和模块化RAG在内的范式描述了它的演变。这篇综述的背景下&#xff0c;更广泛的范围内的法学硕士研究RAG的景观。 2、确定并讨论了RAG过程中不可或缺的核心技术&#xff0c;特别关注“…...

EVM Layer2 主流解决方案

深度解析主流 EVM Layer 2 解决方案&#xff1a;zk Rollups 和 Optimistic Rollups 随着以太坊网络的不断演进和 DeFi 生态系统的迅速增长&#xff0c;以太坊 Layer 2 解决方案日益受到关注。 其中&#xff0c;zk Rollups 和 Optimistic Rollups 作为两种备受瞩目的主流 EVM&…...

go中结构体标签:omitempty、json꞉“name“、 gorm꞉“column꞉name“、yaml꞉“name“

在Go语言中&#xff0c;结构体标签&#xff08;Struct Tags&#xff09;提供了一种在编译时附加到结构体字段上的元数据&#xff0c;这些标签可以被运行时的反射&#xff08;reflection&#xff09;机制读取。结构体标签的存在意义和用途非常广泛&#xff0c;主要包括&#xff…...

七月论文审稿GPT第4版:通过paper-review数据集微调Mixtral-8x7b,对GPT4胜率超过80%

前言 在此之前&#xff0c;我司论文审稿项目组已经通过我司处理的paper-review数据集&#xff0c;分别微调了RWKV、llama2、gpt3.5 16K、llama2 13b、Mistral 7b instruct、gemma 7b 七月论文审稿GPT第1版&#xff1a;通过3万多篇paper和10多万的review数据微调RWKV七月论文审…...

【QT学习】1.qt初识,创建qt工程,使用按钮,第一个交互按钮

1.初识qt--》qt是个框架&#xff0c;不是语言 1.学习路径 一 QT简介 &#xff0c;QTCreator &#xff0c;QT工程 &#xff0c;QT的第一个程序&#xff0c;类&#xff0c;组件 二 信号与槽 三 对话框 四 QT Desiner 控件 布局 样式 五 事件 六 GUI绘图 七 文件 八 …...

JavaScript_与html结合方式

JavaScript_语法 ECMAScript&#xff1a;客户端脚本语言的标准 1.基本语法 1.1 与html结合方式&#xff08;2种&#xff09; 1. 内部JS 定义<script>,标签体内容就是js代码 2. 外部JS 定义<script>,通过src属性引入外部的 js文件 注意&#xff1a; 1.<script>…...

WPF —— 动画

wpf动画类型 1<类型>Animation这些动画称为from/to/by动画或者叫基本动画&#xff0c;他们会在起始值或者结束值进行动画处理&#xff0c;常用的例如 <DoubleAnimation> 2 <类型>AnimationUsingKeyFrames: 关键帧动画&#xff0c;功能要比from/to这些动画功…...

前端二维码生成工具小程序:构建营销神器的技术解析

摘要&#xff1a; 随着数字化营销的不断深入&#xff0c;二维码作为一种快速、便捷的信息传递方式&#xff0c;已经广泛应用于各个领域。本文旨在探讨如何通过前端技术构建一个功能丰富、操作简便的二维码生成工具小程序&#xff0c;为企业和个人提供高效的营销支持。 一、引言…...

光伏发电量预测(Python代码,CNN结合LSTM,TensorFlow框架)

1.数据集&#xff08;开始位置&#xff09;&#xff0c;数据集免费下载链接&#xff1a;https://download.csdn.net/download/qq_40840797/89051099 数据集一共8列&#xff0c;第一列是时间&#xff0c;特征列一共有6列&#xff1a;"WindSpeed" - 风速 "Sunshi…...

GPT带我学-设计模式11-组合模式

设计模式类型 结构型设计模式 使用场景 将对象组合成树状结构来表现"部分-整体"的层次结构。这种模式能够使得客户端对单个对象和组合对象的使用具有一致性。这句话太抽象了&#xff0c;拿一个实际的网站菜单树例子来说。 例子&#xff1a;网页菜单树 一个网站的…...

Centos7 elasticsearch-7.7.0 集群搭建,启用x-pack验证 Kibana7.4用户管理

前言 Elasticsearch 是一个分布式、RESTful 风格的搜索和数据分析引擎&#xff0c;能够解决不断涌现出的各种用例。 作为 Elastic Stack 的核心&#xff0c;它集中存储您的数据&#xff0c;帮助您发现意料之中以及意料之外的情况。 环境准备 软件 …...

[CSS]中子元素在父元素中居中

元素居中 对于当行文字居中&#xff0c;比较简单&#xff0c;设置text-align:center和text-height为盒子高度即可 对于父元素中子元素居中&#xff0c;要实现的话有以下几个方法 方法1&#xff1a;利用定位margin&#xff1a;auto <style>.father {width: 500px;heig…...

电脑突然死机怎么办?

死机是电脑常见的故障问题&#xff0c;尤其是对于老式电脑来说&#xff0c;一言不合电脑画面就静止了&#xff0c;最后只能强制关机重启。那么你一定想知道是什么原因造成的吧&#xff0c;一般散热不良最容易让电脑死机&#xff0c;还有系统故障&#xff0c;比如不小心误删了系…...

Kyligence 正式加入华为“同舟共济”行动计划,成为行业数智化“联盟级伙伴”

让“生态飞轮”旋转让“生态飞轮”旋转3月14日至15日&#xff0c;华为中国合作伙伴大会 2024 在深圳召开。本次大会以“因聚而生&#xff0c;数智有为”为主题&#xff0c;皆在升级“伙伴华为”数智体系&#xff0c;共筑解决方案竞争力&#xff0c;共赢数智世界新机遇。Kyligen…...

大模型推理框架——text-generation-inference

项目地址:https://github.com/huggingface/text-generation-inference 安装 安装rust curl --proto =https --tlsv1.2 -sSf https://sh.rustup.rs | sh安装 Protoc PROTOC_ZIP=protoc-21.12-linux-x86_64.zip curl -OL https://github.com/protocolbuffers/protobuf/relea…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...