竞赛常考的知识点大总结(七)图论
最短路
最短路问题(Shortest Path Problem)是图论中的一个经典问题,它要求在给定的图中找到两个顶点之间的最短路径。最短路问题可以是单源最短路问题(从一个顶点到其他所有顶点的最短路径)或所有对最短路问题(任意两个顶点之间的最短路径)。
特点:
1.图论问题:最短路问题是图论中的一个基本问题,通常在加权图中求解。
2.权重:图中的边具有权重,最短路问题的目标是最小化路径的权重总和。
3.多种算法:存在多种算法可以解决最短路问题,如迪杰斯特拉算法(Dijkstra's Algorithm)、贝尔曼-福特算法(Bellman-Ford Algorithm)、Floyd-Warshall算法等。
4.应用广泛:最短路问题在现实世界中有广泛的应用,如网络路由、交通规划、物流调度等。
常见用法:
1.网络路由:在网络设计中,最短路算法用于确定数据包的最佳传输路径。
2.交通规划:在交通规划中,最短路算法用于计算两点之间的最短行驶路径。
3.物流调度:在物流调度中,最短路算法用于优化货物的配送路径。
4.游戏开发:在游戏开发中,最短路算法用于AI寻路和地图探索。
经典C语言例题:
题目: 使用迪杰斯特拉算法解决单源最短路问题。
示例代码:
#include <stdio.h>
#include <limits.h>// 定义图的结构体
typedef struct Graph {int V; // 顶点数量int** adjMatrix; // 邻接矩阵
} Graph;// 创建图的函数
Graph* createGraph(int V) {Graph* graph = (Graph*)malloc(sizeof(Graph));graph->V = V;graph->adjMatrix = (int**)malloc(V * sizeof(int*));for (int i = 0; i < V; i++) {graph->adjMatrix[i] = (int*)malloc(V * sizeof(int));memset(graph->adjMatrix[i], INT_MAX, V * sizeof(int));graph->adjMatrix[i][i] = 0;}return graph;
}// 添加边的函数
void addEdge(Graph* graph, int src, int dest, int weight) {graph->adjMatrix[src][dest] = weight;graph->adjMatrix[dest][src] = weight; // 无向图
}// 迪杰斯特拉算法函数
void dijkstra(Graph* graph, int src) {int* dist = (int*)malloc(graph->V * sizeof(int));int* sptSet = (int*)malloc(graph->V * sizeof(int));for (int i = 0; i < graph->V; i++) {dist[i] = INT_MAX;sptSet[i] = 0;}dist[src] = 0;for (int count = 0; count < graph->V - 1; count++) {int u = -1, min = INT_MAX;for (int v = 0; v < graph->V; v++) {if (sptSet[v] == 0 && dist[v] <= min) {u = v;min = dist[v];}}sptSet[u] = 1;for (int v = 0; v < graph->V; v++) {if (sptSet[v] == 0 && graph->adjMatrix[u][v] && dist[u] != INT_MAX && dist[u] + graph->adjMatrix[u][v] < dist[v]) {dist[v] = dist[u] + graph->adjMatrix[u][v];}}}printf("Vertex\tDistance from Source\n");for (int i = 0; i < graph->V; i++) {printf("%d\t\t%d\n", i, dist[i]);}free(dist);free(sptSet);
}int main() {Graph* graph = createGraph(9);addEdge(graph, 0, 1, 4);addEdge(graph, 0, 7, 8);addEdge(graph, 1, 2, 8);addEdge(graph, 1, 7, 11);addEdge(graph, 2, 3, 7);addEdge(graph, 2, 8, 2);addEdge(graph, 2, 5, 4);addEdge(graph, 3, 4, 9);addEdge(graph, 3, 5, 14);addEdge(graph, 4, 5, 10);addEdge(graph, 5, 6, 2);addEdge(graph, 6, 8, 6);addEdge(graph, 6, 7, 1);addEdge(graph, 7, 8, 7);dijkstra(graph, 0);free(graph->adjMatrix[0]);free(graph->adjMatrix);free(graph);return 0;
}
例题分析:
1.创建图:createGraph函数创建一个图的结构体,包括顶点数量和邻接矩阵。
2.添加边:addEdge函数向图中添加边,并设置边的权重。
3.迪杰斯特拉算法:dijkstra函数实现迪杰斯特拉算法,计算从源点src到其他所有顶点的最短路径。函数使用一个数组dist来存储到每个顶点的最短路径权重,另一个数组sptSet来标记已经找到最短路径的顶点。
4.打印结果:函数最后打印出每个顶点到源点的最短路径权重。
5.主函数:在main函数中,创建了一个图,并添加了一些边。调用dijkstra函数计算从顶点0到其他所有顶点的最短路径,并打印结果。
这个例题展示了如何在C语言中使用迪杰斯特拉算法解决单源最短路问题。通过这个例子,可以更好地理解迪杰斯特拉算法在解决最短路问题中的应用,以及如何使用邻接矩阵来存储图的信息。迪杰斯特拉算法是一种贪心算法,它通过逐步选择最短的未处理路径来找到最短路径,适用于加权图中的单源最短路问题。
树的直径
树的直径(Diameter of a Tree)是指树中任意两点之间的最长路径的长度。在图论中,树是一种特殊的无向图,它没有环,并且任意两个顶点之间有且仅有一条路径。
特点:
1.最长路径:树的直径是树中任意两点之间的最长路径的长度。
2.无环:树是一种无环的图,这意味着树中不存在循环依赖。
3.唯一路径:在树中,任意两个顶点之间有且仅有一条路径。
4.连通性:树中的任意两个顶点都是连通的。
常见用法:
1.网络设计:在计算机网络中,树的直径可以用来衡量网络的效率,最长路径越短,网络的响应时间越短。
2.数据结构:在数据结构中,树的直径可以用来衡量树的深度,有助于优化树的存储和查询效率。
3.算法设计:在算法设计中,树的直径可以用来衡量算法的性能,最长路径越短,算法的效率越高。
经典C语言例题:
题目: 计算树的直径。
示例代码:
#include <stdio.h>
#include <limits.h>// 定义树的结构体
typedef struct Node {int vertex;struct Node* left;struct Node* right;
} Node;// 创建树的节点
Node* newNode(int v) {Node* node = (Node*)malloc(sizeof(Node));node->vertex = v;node->left = NULL;node->right = NULL;return node;
}// 计算树的直径
int treeDiameter(Node* root) {if (root == NULL) {return 0;}// 计算左右子树的高度int leftHeight = treeDiameter(root->left);int rightHeight = treeDiameter(root->right);// 更新直径int diameter = leftHeight + rightHeight;// 返回当前子树的高度return (leftHeight > rightHeight) ? leftHeight + 1 : rightHeight + 1;
}// 主函数
int main() {Node* root = newNode(1);root->left = newNode(2);root->right = newNode(3);root->left->left = newNode(4);root->left->right = newNode(5);root->right->left = newNode(6);root->right->right = newNode(7);printf("Diameter of the tree is: %d\n", treeDiameter(root));return 0;
}
例题分析:
1.创建树的节点:newNode函数创建树的节点,并初始化节点的值。
2.计算树的直径:treeDiameter函数递归地计算树的直径。函数首先计算左右子树的高度,然后更新直径,最后返回当前子树的高度。
3.主函数:在main函数中,创建了一个树的实例,并调用treeDiameter函数计算树的直径,最后打印结果。
这个例题展示了如何在C语言中使用递归方法来计算树的直径。通过这个例子,可以更好地理解树的直径在解决树形结构问题中的应用,以及如何使用递归技术来高效地解决问题。树的直径是树中任意两点之间的最长路径的长度,通过计算左右子树的高度并更新直径,可以得到整个树的直径。
拓扑排序
拓扑排序(Topological Sorting)是图论中的一种算法,用于对有向无环图(DAG)的顶点进行排序,使得对于图中的每一条有向边(u, v),u在排序中都出现在v之前。拓扑排序通常用于解决依赖关系问题,如课程安排、任务调度等。
特点:
1.有向无环图:拓扑排序只适用于有向无环图,即图中不存在环。
2.排序结果:拓扑排序的结果可能不唯一,因为可能存在多个合法的排序。
3.依赖关系:拓扑排序反映了图中顶点之间的依赖关系,即如果存在一条路径从u到v,则u在排序中必须出现在v之前。
4.应用广泛:拓扑排序在编译器设计、软件工程、项目管理等领域都有广泛应用。
常见用法:
1.课程安排:在大学课程安排中,拓扑排序可以用来确定课程的先修关系。
2.任务调度:在项目管理中,拓扑排序可以用来确定任务的执行顺序。
3.依赖解析:在软件构建系统中,拓扑排序可以用来解析模块之间的依赖关系。
经典C语言例题:
题目: 使用拓扑排序解决课程安排问题。
示例代码:
#include <stdio.h>
#include <stdlib.h>// 定义图的结构体
typedef struct Graph {int V; // 顶点数量int* adjMatrix; // 邻接矩阵
} Graph;// 创建图的函数
Graph* createGraph(int V) {Graph* graph = (Graph*)malloc(sizeof(Graph));graph->V = V;graph->adjMatrix = (int*)malloc(V * V * sizeof(int));return graph;
}// 添加边的函数
void addEdge(Graph* graph, int src, int dest) {graph->adjMatrix[src * graph->V + dest] = 1;
}// 拓扑排序函数
void topologicalSort(Graph* graph, int V, int* order) {int* indegree = (int*)calloc(V, sizeof(int));for (int i = 0; i < V; i++) {for (int j = 0; j < V; j++) {if (graph->adjMatrix[i * V + j] == 1) {indegree[j]++;}}}int queue[V];int front = 0, rear = -1;for (int i = 0; i < V; i++) {if (indegree[i] == 0) {queue[++rear] = i;}}int count = 0;while (front <= rear) {int v = queue[front++];order[count++] = v;for (int i = 0; i < V; i++) {if (graph->adjMatrix[v * V + i] == 1 && --indegree[i] == 0) {queue[++rear] = i;}}}if (count != V) {printf("Graph has a cycle\n");free(indegree);free(queue);return;}printf("Topological order: ");for (int i = 0; i < count; i++) {printf("%d ", order[i]);}printf("\n");free(indegree);free(queue);
}int main() {Graph* graph = createGraph(6);addEdge(graph, 5, 2);addEdge(graph, 5, 0);addEdge(graph, 4, 0);addEdge(graph, 4, 1);addEdge(graph, 2, 3);addEdge(graph, 3, 1);int order[6];topologicalSort(graph, 6, order);return 0;
}
例题分析:
1.创建图:createGraph函数创建一个图的结构体,包括顶点数量和邻接矩阵。
2.添加边:addEdge函数向图中添加边。
3.拓扑排序:topologicalSort函数实现拓扑排序算法。函数首先计算每个顶点的入度,然后将入度为0的顶点入队列。接着,从队列中取出顶点,将其加入排序结果,并将其所有出边对应的顶点的入度减1,如果入度变为0,则加入队列。最后,如果排序结果的顶点数量不等于图的顶点数量,则说明图中有环。
4.打印结果:函数最后打印出拓扑排序的结果。
5.主函数:在main函数中,创建了一个图,并添加了一些边。调用topologicalSort函数计算拓扑排序,并打印结果。
这个例题展示了如何在C语言中使用拓扑排序解决课程安排问题。通过这个例子,可以更好地理解拓扑排序在解决依赖关系问题中的应用,以及如何使用邻接矩阵来存储图的信息。拓扑排序是一种有效的算法,可以用来确定有向无环图中顶点的合法排序,从而解决依赖关系问题。
最小生成树
最小生成树(Minimum Spanning Tree,MST)是图论中的一个概念,它是指在一个加权连通图中,选取的边的权重之和最小,并且包括图中的所有顶点的生成树。最小生成树具有以下特点:
特点:
1.连通性:最小生成树包含图中的所有顶点。
2.无环:最小生成树是一棵树,因此它不包含任何环。
3.权重最小:最小生成树的边的权重之和是所有生成树中最小的。
4.唯一性:在权重不相等的图中,最小生成树是唯一的;如果图中存在权重相同的边,则可能存在多个最小生成树。
常见用法:
1.网络设计:在计算机网络中,最小生成树用于设计最经济的网络连接。
2.电路设计:在电路设计中,最小生成树用于寻找连接所有元件的最短路径。
3.城市规划:在城市规划中,最小生成树用于确定城市中各个区域的最短道路连接。
4.图像处理:在图像处理中,最小生成树用于图像分割和特征提取。
经典C语言例题:
题目: 使用普里姆算法(Prim's Algorithm)解决最小生成树问题。
示例代码:
#include <stdio.h>
#include <limits.h>// 定义图的结构体
typedef struct Graph {int V; // 顶点数量int** adjMatrix; // 邻接矩阵
} Graph;// 创建图的函数
Graph* createGraph(int V) {Graph* graph = (Graph*)malloc(sizeof(Graph));graph->V = V;graph->adjMatrix = (int**)malloc(V * sizeof(int*));for (int i = 0; i < V; i++) {graph->adjMatrix[i] = (int*)malloc(V * sizeof(int));memset(graph->adjMatrix[i], INT_MAX, V * sizeof(int));graph->adjMatrix[i][i] = 0;}return graph;
}// 添加边的函数
void addEdge(Graph* graph, int src, int dest, int weight) {graph->adjMatrix[src][dest] = weight;graph->adjMatrix[dest][src] = weight; // 无向图
}// 普里姆算法函数
void primMST(Graph* graph, int start) {int* key = (int*)malloc(graph->V * sizeof(int));int* parent = (int*)malloc(graph->V * sizeof(int));int* inMST = (int*)calloc(graph->V, sizeof(int));for (int i = 0; i < graph->V; i++) {key[i] = INT_MAX;parent[i] = -1;}key[start] = 0;parent[start] = -1;for (int count = 0; count < graph->V - 1; count++) {int u = -1, min = INT_MAX;for (int v = 0; v < graph->V; v++) {if (inMST[v] == 0 && key[v] <= min) {u = v;min = key[v];}}inMST[u] = 1;for (int v = 0; v < graph->V; v++) {if (graph->adjMatrix[u][v] && inMST[v] == 0 && graph->adjMatrix[u][v] < key[v]) {parent[v] = u;key[v] = graph->adjMatrix[u][v];}}}printf("Edge \tWeight\n");for (int i = 1; i < graph->V; i++) {printf("%d - %d \t%d\n", parent[i], i, graph->adjMatrix[i][parent[i]]);}free(key);free(parent);free(inMST);
}int main() {Graph* graph = createGraph(9);addEdge(graph, 0, 1, 4);addEdge(graph, 0, 7, 8);addEdge(graph, 1, 2, 8);addEdge(graph, 1, 7, 11);addEdge(graph, 2, 3, 7);addEdge(graph, 2, 8, 2);addEdge(graph, 2, 5, 4);addEdge(graph, 3, 4, 9);addEdge(graph, 3, 5, 14);addEdge(graph, 4, 5, 10);addEdge(graph, 5, 6, 2);addEdge(graph, 6, 8, 6);addEdge(graph, 6, 7, 1);addEdge(graph, 7, 8, 7);primMST(graph, 0);free(graph->adjMatrix[0]);free(graph->adjMatrix);free(graph);return 0;
}
例题分析:
1.创建图:createGraph函数创建一个图的结构体,包括顶点数量和邻接矩阵。
2.添加边:addEdge函数向图中添加边,并设置边的权重。
3.普里姆算法:primMST函数实现普里姆算法,计算从源点start到其他所有顶点的最小生成树。函数使用三个数组key、parent和inMST来存储每个顶点的最小权重、前驱顶点和是否在最小生成树中。
4.打印结果:函数最后打印出最小生成树的边和权重。
5.主函数:在main函数中,创建了一个图,并添加了一些边。调用primMST函数计算从顶点0到其他所有顶点的最小生成树,并打印结果。
这个例题展示了如何在C语言中使用普里姆算法解决最小生成树问题。通过这个例子,可以更好地理解普里姆算法在解决最小生成树问题中的应用,以及如何使用邻接矩阵来存储图的信息。普里姆算法是一种贪心算法,它通过逐步选择最小权重的边来构建最小生成树,适用于加权图中的最小生成树问题。
相关文章:
竞赛常考的知识点大总结(七)图论
最短路 最短路问题(Shortest Path Problem)是图论中的一个经典问题,它要求在给定的图中找到两个顶点之间的最短路径。最短路问题可以是单源最短路问题(从一个顶点到其他所有顶点的最短路径)或所有对最短路问题&#x…...
NOSQL - Redis的简介、安装、配置和简单操作
目录 一. 知识了解 1. 关系型数据库与非关系型数据库 1.1 关系型数据库 1.2 非关系型数据库 1.3 区别 1.4 非关系型数据库产生背景 1.5 NOSQL 与 SQL的数据记录对比 2. 缓存相关知识 2.1 缓存概念 2.2 系统缓存 2.3 缓存保存位置及分层结构 二 . redis 相关知识 1.…...
书生·浦语大模型开源体系(二)笔记
💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…...
docker-compse安装es(包括IK分词器扩展)、kibana、libreoffice
Kibana是一个开源的分析与可视化平台,设计出来用于和Elasticsearch一起使用的。你可以用kibana搜索、查看存放在Elasticsearch中的数据。 Kibana与Elasticsearch的交互方式是各种不同的图表、表格、地图等,直观的展示数据,从而达到高级的数据…...
Electron 读取本地配置 增加缩放功能(ctrl+scroll)
最近,一个之前做的electron桌面应用,需要增加两个功能;第一是读取本地的配置文件,然后记载配置文件中的ip地址;第二就是增加缩放功能; 第一,配置本地文件 首先需要在vue工程根目录中࿰…...
docker中配置交互式的JupyterLab环境的问题
【报错1】 Could not determine jupyter lab build status without nodejs 【解决措施】安装nodejs(利用conda进行安装/从官网下载进行安装) 1、conda安装 conda install -c anaconda nodejs 安装后出现其他报错:Please install nodejs 5 and npm bef…...
SQLAlchemy 来查询并统计 MySQL 中 JSON 字段的一个值
在使用 SQLAlchemy 来查询并统计 MySQL 中 JSON 字段的一个值时,你可以结合 SQLAlchemy 的 func 模块来实现 SQL 函数的调用,比如 JSON_EXTRACT,并使用 group_by 和 count 方法来进行分组统计。下面是如何在 SQLAlchemy 中实现这一点的基本步…...
HTTPS ECDHE 握手解析(计算机网络)
使用了 ECDHE,在 TLS 第四次握手前,客户端就已经发送了加密的 HTTP 数据,而对于 RSA 握手过程,必须要完成 TLS 四次握手,才能传输应用数据。 所以,ECDHE 相比 RSA 握手过程省去了一个消息往返的时间&#…...
在git上先新建仓库-把本地文件提交远程
一.在git新建远程项目库 1.选择新建仓库 以下以gitee为例 2.输入仓库名称,点击创建 这个可以选择仓库私有化还公开权限 3.获取仓库clone链接 这里选择https模式就行,就不需要配置对电脑进行sshkey配置了。只是需要每次提交输入账号密码 二、远…...
Redis 过期删除策略
Redis 过期删除策略 Redis 过期删除策略主要包括两种:惰性删除(Lazy Expiration)和定期删除(Periodic Expiration)。这两种策略通常会配合使用,以在内存使用效率、CPU 资源消耗以及过期键清理的及时性之间…...
MySQL 锁合集与事务隔离级别
概览 在数据库管理中,锁是用来控制多个事务对同一数据的并发访问的机制。InnoDB作为MySQL的默认事务型存储引擎,提供了多种类型的锁来保障事务的隔离性并减少冲突,从而维护数据库的完整性和一致性。以下是InnoDB提供的主要锁类型:…...
题解 -- 第六届蓝桥杯大赛软件赛决赛C/C++ 大学 C 组
https://www.lanqiao.cn/paper/ 1 . 分机号 模拟就行 : inline void solve(){int n 0 ;for(int a1;a<9;a){for(int b0;b<9;b){for(int c0;c<9;c){if(a>b && b>c){n ;}}}}cout << n << endl ; } 2 . 五星填数 直接调用全排列的库函数…...
Lua脚本的使用
一、使用lua脚本扣减单个商品的库存 SpringBootTest class LuaTests {AutowiredStringRedisTemplate stringRedisTemplate;Testvoid test3() {for (int i 1; i < 5; i) {stringRedisTemplate.opsForValue().set("product."i,String.valueOf(i));}}Testvoid test…...
hcia datacom课程学习(5):MAC地址与arp协议
1.MAC地址 1.1 含义与作用 (1)含义: mac地址也称物理地址,是网卡设备在数据链路层的地址,全世界每一块网卡的mac地址都是唯一的,出厂时烧录在网卡上不可更改 (2)作用:…...
unbuntu mysql8.0新建用户及开启远程连接
MySQL更新到8.0以上版本后,在创建连接远程的用户的时候和之前5.x的版本有了很大的不同,不能使用原来同时创建用户和授权的命令。 以下是记录的MySQL8.0创建用户并授权的命令: 查看用户表: user mysql; select host,user,authen…...
Intel FPGA (1):线性序列机
Intel FPGA (1):线性序列机 前提摘要 个人说明: 限于时间紧迫以及作者水平有限,本文错误、疏漏之处恐不在少数,恳请读者批评指正。意见请留言或者发送邮件至:“Email:noahpanzzzgmail.com”。本博客的工程文件均存放在…...
翻译: 硅谷软件工程师面试:准备所需的一切
没有人有时间去做成百上千道LeetCode题目,好消息是你实际上并不需要做那么多题目就能够在FAANG公司找到工作! 我曾经在Grab工作,这是东南亚的一家共享出行公司,但我对工作感到沮丧,想要进入FAANG公司,但我…...
视频推拉流EasyDSS点播平台云端录像播放异常的问题排查与解决
视频推拉流EasyDSS视频直播点播平台可提供一站式的视频转码、点播、直播、视频推拉流、播放H.265视频等服务,搭配RTMP高清摄像头使用,可将无人机设备的实时流推送到平台上,实现无人机视频推流直播、巡检等应用。 有用户反馈,项目现…...
kubuntu23.10安装sdl2及附加库和 sfml2.5.1
2024年3月28号,四,晚上kubuntu23.10下安装了sdl2的如下,没有安装gfx。 sudo apt install libsdl2-dev sudo apt install libsdl2-image-dev sudo apt install libsdl2-ttf-dev sudo apt install libsdl2-mixer-dev sudo apt install libsdl2…...
Centos JDK1.8 下载安装
https://www.oracle.com/java/technologies/javase/javase8u211-later-archive-downloads.html 一 RPM包安装 rpm -ivh jdk-8u391-linux-x64.rpm /etc/profile export JAVA_HOME/usr/java/jdk1.8.0-x64 export PATH$JAVA_HOME/bin:$PATHsource /etc/profile二 tar.gz 包手动…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章 摘要: 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言,受限于 C 语言本身的内存安全和并发安全问题,开发复杂模块极易引入难以…...
