当前位置: 首页 > news >正文

【统计】什么事 R 方

将线性模型拟合到时间序列时,通常使用最小二乘法在模型 y ^ ( t ) = a + b t \hat{y}(t) = a + bt y^(t)=a+bt中找到系数 a a a b b b,其中 y ^ ( t ) \hat{y}(t) y^(t)是时间 t t t的预测值,而的观测值是 y ( t ) y(t) y(t)

残差平方和又称误差平方和(SSE),计算公式为:

S S E = ∑ i = 1 n ( y i − y ^ i ) 2 SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 SSE=i=1n(yiy^i)2

其中 y i y_i yi i i i时刻的观测值, y ^ i \hat{y}_i y^i i i i时刻的预测值, n n n为观测数。

为了使其规范化,可以将SSE除以表示原始数据可变性的度量。一种常见的选择是使用总平方和(SST),它测量数据集中的总方差:

S S T = ∑ i = 1 n ( y i − y ˉ ) 2 SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 SST=i=1n(yiyˉ)2

其中 y ˉ \bar{y} yˉ为观测值的平均值。

然后,可以计算决定系数,也称为 R 2 R^2 R2,这是一个指标,表明因变量中方差的比例,可以从自变量预测:

R 2 = 1 − S S E S S T R^2 = 1 - \frac{SSE}{SST} R2=1SSTSSE

R 2 R^2 R2范围从0到1,其中接近1的值表明该模型解释了结果变量的大部分方差,表明更线性的关系。

然而,如果想要一个专门衡量非线性的指标,可以考虑使用以下规范化值:

N L = S S E S S T = 1 − R 2 NL = \frac{SSE}{SST} = 1 - R^2 NL=SSTSSE=1R2

对于被线性趋势很好地近似的时间序列,这种归一化线性度量(NL)将接近于0,对于不被线性趋势很好地近似的时间序列,这种归一化线性度量(NL)将接近于1。

如果不考虑模型和数据的上下文,使用 R 2 R^2 R2 N L NL NL可能会产生误导。它们没有表明回归量是否与结果变量有因果关系,也没有表明模型是否是备选方案中最好的。查看残差并执行其他诊断检查以确保模型的适当性总是很重要的。

相关文章:

【统计】什么事 R 方

将线性模型拟合到时间序列时,通常使用最小二乘法在模型 y ^ ( t ) a b t \hat{y}(t) a bt y^​(t)abt中找到系数 a a a和 b b b,其中 y ^ ( t ) \hat{y}(t) y^​(t)是时间 t t t的预测值,而的观测值是 y ( t ) y(t) y(t)。 残差平方和又…...

Maplesoft Maple 2024(数学科学计算)mac/win

Maplesoft Maple是一款强大的数学计算软件,提供了丰富的功能和工具,用于数学建模、符号计算、数据可视化等领域的数学分析和解决方案。 Mac版软件下载:Maplesoft Maple 2024 for mac激活版 WIn版软件下载:Maplesoft Maple 2024特别…...

实战 | YOLOv8自定义数据集训练实现手势识别 (标注+训练+预测 保姆级教程--含数据集)

导 读 本文将手把手教你用YoloV8训练自己的数据集并实现手势识别。 安装环境 【1】安装torch, torchvision对应版本,这里先下载好,直接安装 pip install torch-1.13.1+cu116-cp38-cp38-win_amd64.whlpip install torchvision-0.14.1+cu116-cp38-cp38-win_amd64.whl 安装好…...

从零学算法2810

2810.你的笔记本键盘存在故障,每当你在上面输入字符 ‘i’ 时,它会反转你所写的字符串。而输入其他字符则可以正常工作。 给你一个下标从 0 开始的字符串 s ,请你用故障键盘依次输入每个字符。 返回最终笔记本屏幕上输出的字符串。 示例 1&am…...

Vue——案例01(查询用户)

目录 一、案例实现页面 二、案例实现效果 1. 查询效果 2. 年龄升序 3. 年龄降序 4. 原顺序 三、案例实现思路 四、完整代码 一、案例实现页面 实现用户对年龄的升降的排序、根据名字搜索用户信息以及重新返回原序列 二、案例实现效果 1. 查询效果 2. 年龄升序 3. 年龄…...

【数据结构】线性表

文章目录 前言线性表的定义和基本操作1.线性表的定义2.线性表的基本操作 顺序表的定义1.静态分配方式2.动态分配方式 顺序表的插入和删除1.顺序表的插入2.顺序表的删除 顺序表的查找1.按位查找(简单)2.按值查找 单链表的定义1.代码定义一个单链表2.不带头…...

983. 最低票价 C++

class Solution { public:int mincostTickets(vector<int>& days, vector<int>& costs) {// 状态定义&#xff1a; f[i] 表示 i 天及之后 旅行所需的最小花费int f[366]{};// 标注哪些天 出门for (int v: days) f[v] 1;// 由于状态转移是逆向的 所以倒序 …...

紫光展锐P7885核心板详细参数介绍_5G安卓智能模块开发方案

紫光展锐P7885核心板采用了先进的6nm EUV制程工艺&#xff0c;集成了高性能的应用处理器和金融级安全解决方案&#xff0c;为用户带来了全新的性能体验。 P7885核心板搭载了先进的6nm制程工艺SoC P7885&#xff0c;其中包含四核A76和四核A55&#xff0c;主频可达2.7Ghz&#xf…...

Keil MDK 5.37 及之后版本 安装 AC5(ARMCC) 编译器详细步骤

由于 Keil 5.37 及之后版本不再默认安装 AC5(ARMCC) 编译器&#xff0c;这就会导致由 AC5 编译的工程无法正常编译&#xff0c;往往输出窗口会提示以下信息&#xff1a;*** Target ‘STM32xxxx‘ uses ARM-Compiler ‘Default Compiler Version 5‘ which is not available. —…...

速盾:cdn配置ssl

CDN&#xff08;Content Delivery Network&#xff09;是一种内容分发网络&#xff0c;它的作用是将原始服务器上的内容分发到全球各地的边缘节点上&#xff0c;以提高用户访问速度和稳定性。随着数据传输的安全性要求越来越高&#xff0c;配置SSL&#xff08;Secure Sockets L…...

代码随想录算法训练营 Day41 动态规划3

Day41 动态规划3 343. 整数拆分 思路 不知道如何拆分&#xff0c;才能使乘积最大化 有什么理论依据&#xff1f; 根据代码随想录 拆分使乘积最大化逻辑&#xff1a;应该尽可能拆成相同的数 根据题目&#xff0c;发现&#xff0c;拆分后的数可以继续拆分&#xff0c;因此可…...

面试题:反推B+树高度

一个表5000w数据&#xff0c;一个数据行大小为1k&#xff0c;主键为long类型数据&#xff0c;假设指针大小为8B&#xff0c;页大小为16K&#xff0c;求B树的高度&#xff1f; B树的非叶子节点存储key和指针&#xff0c;叶子节点存储数据&#xff0c;对应表中的某些行。 叶子节点…...

瑞吉外卖实战学习--11、分类管理的列表分页查询

分类管理的列表分页查询 前言1、创建接口2、基于分页组件来实现的 前言 通过前端接口可以看到请求和传递的参数&#xff0c;本文章是基于mybatisPlus的分页插件来实现的 1、创建接口 GetMapping("/page")public R<Page> page(int page,int pageSize){ // …...

网络安全新视角:数据可视化的力量

在当今数字化时代&#xff0c;网络安全已成为各大企业乃至国家安全的重要组成部分。随着网络攻击的日益复杂和隐蔽&#xff0c;传统的网络安全防护措施已难以满足需求&#xff0c;急需新型的解决方案以增强网络防护能力。数据可视化技术&#xff0c;作为一种将复杂数据转换为图…...

Aurora8b10b(2)上板验证

文章目录 前言一、AXI_Stream数据产生模块二、上板效果总结 前言 上一篇内容我们已经详细介绍了基于aurora8b10b IP核的设计&#xff0c;本文将基于此进一步完善并且进行上板验证。 设计思路及代码思路参考FPGA奇哥系列网课 一、AXI_Stream数据产生模块 AXIS协议是非常简单的…...

每天五分钟计算机视觉:使用神经网络完成人脸的特征点检测

本文重点 我们上一节课程中学习了如何利用神经网络对图片中的对象进行定位,也就是通过输出四个参数值bx、by、bℎ和bw给出图片中对象的边界框。 本节课程我们学习特征点的检测,神经网络可以通过输出图片中对象的特征点的(x,y)坐标来实现对目标特征的识别,我们看几个例子。…...

表白墙项目(JAVA实现)

1、在html里 class使用. id使用# 2、记得引入响应依赖&#xff08;举例lombok&#xff09; 3、messageController package com.example.demo.demos.web; import org.springframework.util.StringUtils; import org.springframework.web.bind.annotation.RequestMapping; i…...

openGauss 高级分析函数支持

高级分析函数支持 可获得性 本特性自openGauss 1.1.0版本开始引入。 特性简介 无。 客户价值 我们提供窗口函数来进行数据高级分析处理。窗口函数将一个表中的数据进行预先分组&#xff0c;每一行属于一个特定的组&#xff0c;然后在这个组上进行一系列的关联分析计算。这…...

【Java面试题系列】基础篇

目录 基本常识标识符的命名规则八种基本数据类型的大小&#xff0c;以及他们的封装类3*0.10.3返回值是什么short s1 1; s1 s1 1;有什么错? short s1 1; s1 1;有什么错?简述&&与&的区别&#xff1f;简述break与continue、return的区别&#xff1f;Arrays类的…...

Ubuntu 23.04 安装es

在Ubuntu 23.04上安装Elasticsearch的过程可能与之前版本类似&#xff0c;以下是基于最新稳定版Elasticsearch的一般安装步骤&#xff1a; 准备工作&#xff1a; 确保系统已更新至最新版本&#xff1a; sudo apt update && sudo apt upgrade安装Java Development Kit (…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

uni-app学习笔记三十五--扩展组件的安装和使用

由于内置组件不能满足日常开发需要&#xff0c;uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件&#xff0c;需要安装才能使用。 一、安装扩展插件 安装方法&#xff1a; 1.访问uniapp官方文档组件部分&#xff1a;组件使用的入门教程 | uni-app官网 点击左侧…...

【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架

文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理&#xff1a;检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目&#xff1a;RankRAG&#xff1a;Unifying Context Ranking…...