当前位置: 首页 > news >正文

2024.3.2力扣每日一题——受限条件下可到达节点的数目

2024.3.2

      • 题目来源
      • 我的题解
        • 方法一 深度优先搜索
        • 方法二 并查集

题目来源

力扣每日一题;题序:2368

我的题解

方法一 深度优先搜索

使用深度优先搜索实现,在搜索过程中根据restricted进行截停。

时间复杂度:O(n)
空间复杂度:O(n)

int res=0;
public int reachableNodes(int n, int[][] edges, int[] restricted) {List<Integer>[] g=createTree(n,edges);boolean[] bRestricted=new boolean[n];for(int i:restricted){bRestricted[i]=true;}dfs(g,0,-1,bRestricted);return res;
}
public List<Integer>[] createTree(int n,int[][] edges){List<Integer>[] g=new ArrayList[n];for(int i=0;i<n;i++){g[i]=new ArrayList<>();}for(int[] t:edges){int from = t[0];int to = t[1];g[from].add(to);g[to].add(from);}return g;
}
public void dfs(List<Integer>[] g,int cur,int pre,boolean[] bRestricted){res++;for(int next:g[cur]){//防止循环遍历  并且不能是受限节点if(next!=pre&&!bRestricted[next])dfs(g,next,cur,bRestricted);}
}
方法二 并查集

如果忽略受限的点,树就会变成若干个连通块,要计算的就是 0号点所在连通块的大小。
因此,可以用并查集来不断地将点集进行合并,依次考虑每一条边,如果边上两个点都没有受限,那么合并这两个点的所在集合,否则跳过该边。最终查询 0号点所在连通块的大小即可。

时间复杂度:O(n×α(n)),其中 n 是无向树中点的个数,α是反阿克曼函数。使用路径压缩和按秩合并优化后的并查集,单次查询和合并操作的时间复杂度是 O(α(n)),通常比较小,可以忽略。
空间复杂度:O(n)

public int reachableNodes(int n, int[][] edges, int[] restricted) {boolean[] bRestricted=new boolean[n];for(int i:restricted){bRestricted[i]=true;}UF uf=new UF(n);for(int[] v:edges){//如果起始和结束节点有一个是受限的节点,则不合并if(bRestricted[v[0]]||bRestricted[v[1]]){continue;}uf.union(v[0],v[1]);}return uf.getCount();
}
class UF{private int count;private int parent[];public UF(int n){count=n;parent=new int[n];for (int i = 0; i < n; i++) {parent[i]=i;}}public void union(int p,int q){int parentP=find(p);int parentQ=find(q);if (parentP==parentQ)return;parent[parentQ]=parentP;count--;}public boolean isConnection(int p,int q){int parentP=find(p);int parentQ=find(q);return parentP==parentQ;}public int find(int x){if(parent[x]!=x){parent[x]=find(parent[x]);//路径压缩}return parent[x];}public int getCount(){int cnt=0;//找0所在的集合int rt=find(0);for(int i=0;i<parent.length;i++){if(rt==find(i))cnt++;}return cnt;}
}

有任何问题,欢迎评论区交流,欢迎评论区提供其它解题思路(代码),也可以点个赞支持一下作者哈😄~

相关文章:

2024.3.2力扣每日一题——受限条件下可到达节点的数目

2024.3.2 题目来源我的题解方法一 深度优先搜索方法二 并查集 题目来源 力扣每日一题&#xff1b;题序&#xff1a;2368 我的题解 方法一 深度优先搜索 使用深度优先搜索实现&#xff0c;在搜索过程中根据restricted进行截停。 时间复杂度&#xff1a;O(n) 空间复杂度&#…...

在云端遇见雨云:一位服务器寻觅者的指南

引言&#xff1a;寻觅一座云端归宿 当我踏入数字世界的边缘&#xff0c;带着对网络的探索与期待&#xff0c;我迫切需要一座安全可靠的数字栖息地。云计算技术正如一场魔法般的变革&#xff0c;而在这片广袤的云端中&#xff0c;雨云就像是一位友善的向导&#xff0c;引领我穿越…...

Pygame基础10-物理模拟

PyMunk PyMunk是一个模拟物理的库。 注意&#xff0c;PyMunk只是进行物理模拟&#xff0c;不包含可视化的功能。如果需要可视化&#xff0c;可使用pygame等库。 可用pip安装pymunk pip install pymunk pymunk中的概念&#xff1a; space&#xff1a; 物理空间。 包含gravity 模…...

蓝桥杯 --- 日期问题模板

目录 1.如何判断闰年 2.如何遍历当前年份的每一天 3.如果想要输出某一年某一天到某一年某一天之间一共有多少天。 4.精确到具体周几到周几的问题分析 5.如何直接通过一层for循环枚举年月日 习题&#xff1a; 蓝桥杯竞赛特别喜欢考日期问题&#xff0c;今天给大家分享一下…...

Java 处理Mysql获取树形的数据

Mysql数据&#xff1a; 代码如下&#xff1a; Entity&#xff1a; Data Accessors(chain true) public class Region {private BigInteger id;//名称private String name;//父idprivate BigInteger parentId;private List<Region> children;private Integer createTim…...

前端三剑客 —— CSS ( 坐标问题 、定位问题和图片居中 )

前期内容回顾&#xff1a; 1.常见样式 text-shadow x轴 y轴 阴影的模糊程度 阴影的颜色 box-shadow border-radio 实现圆角 margin 内边距 padding 外边距 background 2.特殊样式 媒体查询&#xff1a;media 自定义字体&#xff1a;font-face { font-family:自定义名称&#…...

向量数据库 | AI时代的航道灯塔

向量数据库 | AI时代的航道灯塔 什么是向量检索服务拍照搜商品 你使用过向量数据库吗&#xff1f;使用体验&#xff1f;为什么向量数据库能借由大模型引起众多关注向量数据库在当前AI热潮中是昙花一现&#xff0c;还是未来AI时代的航道灯塔&#xff1f; 今天的话题主要是讨论向…...

Linux中的conntrack命令深入解析

在Linux网络管理和监控领域&#xff0c;conntrack命令是一个强大的工具&#xff0c;它提供了对netfilter连接跟踪系统的直接访问&#x1f50d;。这篇文章将深入探讨conntrack的由来、底层原理、参数意义&#xff0c;以及其常见用法&#xff0c;并对返回结果的每个字段进行详细解…...

反截屏控制技术如何防止信息通过手机拍照泄漏?

反截屏控制技术为企业数据安全提供了重要的防护措施。通过以下几点&#xff0c;有效阻止了信息通过拍照等方式的泄漏&#xff1a; 反截屏控制开启&#xff0c;用户启动截屏操作时&#xff0c;允许非涉密内容截屏操作&#xff0c;但所有涉密内容窗口会自动隐藏&#xff0c;防止涉…...

0.k8s简介

目录 k8s是什么 k8s不是什么 云原生 微服务 整体式架构与微服务架构 微服务的特性 微服务的优势 k8s是什么 Kubernetes 是一个可移植、可扩展的开源平台&#xff0c;用于管理容器化的工作负载和服务&#xff0c;可促进声明式配置和自动化。 Kubernetes 拥有一个庞大且快…...

VScode 集成终端设置默认打开当前文件夹 mac系统

一.快捷键设置 搜索 openInIntegratedTerminal 如图&#xff1a; 二.设置cmd 默认打开位置 点击设置 搜索 ntegrated:cwd 如下图&#xff1a; 三.查看ip 快捷指令&#xff1a; ipconfig getifaddr en0...

HDLbits 刷题 -- Alwaysblock2

学习&#xff1a; For hardware synthesis, there are two types of always blocks that are relevant: Combinational: always (*)Clocked: always (posedge clk) Clocked always blocks create a blob of combinational logic just like combinational always blocks, but…...

一、Docker部署GitLab(详细步骤)

Docker部署GitLab&#xff08;详细步骤&#xff09; 一、拉取镜像二、启动容器三、修改配置四、修改密码五、浏览器访问 一、拉取镜像 docker安装教程&#xff1a;https://qingsi.blog.csdn.net/article/details/131270071 docker pull gitlab/gitlab-ce:latest二、启动容器 …...

Vue3 Ajax(axios)

Vue 版本推荐使用 axios 来完成 ajax 请求。 安装方法 使用 cdn: <script src"https://unpkg.com/axios/dist/axios.min.js"></script> 使用 npm: $ npm install axios GET 方法 我们可以简单的读取 JSON 数据&#xff1a; const app {data() {r…...

正则表达式引擎库汇合

1.总览表格 一些正则表达式库的对比 index库名编程语言说明代码示例编译指令1Posix正则C语言是C标准库中用于编译POSIX风格的正则表达式库 posix-re.cgcc posix-re.c 2PCRE库C语言提供类似Perl语言的一个正则表达式引擎库。 一般系统上对应/usr/lib64/libpcre.so这个库文件&am…...

eBay买家号注册下单容易死号?是什么原因导致?

随着电子商务的迅猛发展&#xff0c;跨境电商平台eBay日益成为众多消费者和商家的首选。然而&#xff0c;自去年下半年以来&#xff0c;eBay推出的新规则给买家号的注册带来了前所未有的挑战。许多新用户反映&#xff0c;在注册eBay买家号后&#xff0c;往往遭遇刚注册就被冻结…...

【Linux】-进程知识铺垫①计算机硬件的组织:冯诺依曼体系结构详细解读②关于操作系统对软硬件及用户的意义

目录 ​编辑 1.关于计算机的体系结构 1.1 冯诺依曼体系结构的诞生 2.冯诺依曼体系结构 2.1 cpu:运算器&#xff1a;更多的是让cpu具有特殊的数据计算功能&#xff1a; 2.2 控制器 2.3输入设备 2.4输出设备 3.计算机各个硬件设备之间的关系 4.内存与计算机效率 5.关于为什么总说…...

让ECC升级S/4HANA一步到位的“全面升级方案包”

SAP最新一代商务套件S/4HANA比ECC系统拥有更高性能的存储数据库HANA、更个性化的Fiori用户界面设计系统&#xff0c;能够大大提升系统效率&#xff0c;带来便捷、高效、良好的用户体验。但企业原先使用的ECC系统里面保存了积累多年的关键流程和数据&#xff0c;让企业面对系统升…...

AutoGluon

官网 amazon (base) PS C:\Users\gg葱> conda env list # conda environments: # pytorch1 C:\Users\gg葱\.conda\envs\pytorch1 base * D:\ANCDD:\Documents\LMm\env\pytorch2(base) PS C:\Users\gg葱> conda create --prefixD:/Doc…...

【网站项目】少儿编程管理系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

FFmpeg:Windows系统小白安装及其使用

一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】&#xff0c;注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录&#xff08;即exe所在文件夹&#xff09;加入系统变量…...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG

TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码&#xff1a;HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...