算法| ss 回溯
- 39.组合总数
- 46.全排列—4
- 78.子集
- 79.单词搜索—1
- 连续差相同的数字—1
39.组合总数
/*** @param {number[]} candidates* @param {number} target* @return {number[][]}*/
// 思路
// dfs传参,传idx, 剩余target
// dfs返回: =0 收集, <0 false
var combinationSum = function (candidates, target) {const sets = [];const subset = [];dfs(0, target, subset);// console.log(sets);return sets;/**** @param {*} idx 下标开始* @param {*} target 剩余目标值* @returns*/function dfs(idx, target, subset) {if (target < 0) return;if (target === 0) {sets.push([...subset]);return;}for (let j = idx; j < candidates.length; j++) {subset.push(candidates[j]);dfs(j, target - candidates[j], subset);subset.pop();}}
};
combinationSum([2, 3, 6, 7], 7);
46.全排列—4
/*** @param {number[]} nums* @return {number[][]}*/
// 思路
// 数量相等
// 剪枝 used+ i===i-1var permuteUnique = function (nums) {const sets = [];const subset = [];const used = Array(nums.length).fill(0);dfs(subset);console.log(sets);function dfs(subset) {for (let i = 0; i < nums.length; i++) {if (subset.length === nums.length) {sets.push([...subset]);return;}if (used[i] === 1) continue;if (i > 0 && nums[i] === nums[i - 1] && used[i - 1] === 1) continue;used[i] = 1;subset.push(nums[i]);dfs(subset);subset.pop();used[i] = 0;}}
};
permuteUnique([1, 1, 2]);
// nums = [1,1,2]
78.子集
/*** @param {number[]} nums* @return {number[][]}*/
// 思路
// dfs idx传参是依次递增
var subsets = function (nums) {const sets = [];const subset = [];dfs(0, subset);// console.log(sets);return sets;function dfs(idx, subset) {if (subset.length > nums.length) return;sets.push([...subset]);for (let i = idx; i < nums.length; i++) {subset.push(nums[i]);dfs(i + 1, subset);subset.pop();}}
};
subsets([1, 2, 3]);
// nums = [1,2,3]
79.单词搜索—1
/*** @param {character[][]} board* @param {string} word* @return {boolean}*/
// 思路
// dfs四个方向的或值 并返回
// dfs 什么时候进入
// dfs 返回值 长度相等时
var exist = function (board, word) {const m = board.length;const n = board[0].length;for (let i = 0; i < m; i++) {for (let j = 0; j < n; j++) {if (board[i][j] === word[0]) {if (dfs(0, i, j)) return true;}}}return false;function dfs(idx, x, y) {if (x < 0 || x >= m || y < 0 || y >= n) return false;if (board[x][y] !== word[idx]) return false;if (idx === word.length - 1) return true;board[x][y] = null;const res =dfs(idx + 1, x + 1, y) ||dfs(idx + 1, x - 1, y) ||dfs(idx + 1, x, y + 1) ||dfs(idx + 1, x, y - 1);board[x][y] = word[idx];return res;}
};console.log(exist([["A", "B", "C", "E"],["S", "F", "C", "S"],["A", "D", "E", "E"],],"ABCCED")
);
console.log(exist([["A", "B", "C", "E"],["S", "F", "C", "S"],["A", "D", "E", "E"],],"ABCB")
);
// board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED"
// [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB"
连续差相同的数字—1
/*** @param {number} n* @param {number} k* @return {number[]}*/
// 思路
// 进入下一轮dfs条件
// 首个或者 绝对值差为k
// dfs 返回 subset 长度等于n 并且首位不能为0
var numsSameConsecDiff = function (n, k) {const sets = [];const subset = [];dfs(subset);// console.log(sets);return sets;function dfs(subset) {for (let i = 0; i < 10; i++) {if (subset.length === n) {if (subset[0] !== 0) {sets.push(+subset.join(""));}return;}if (subset.length === 0 ||Math.abs(subset[subset.length - 1] - i) === k) {subset.push(i);dfs(subset);subset.pop();}}}
};
numsSameConsecDiff(3, 7);// 输入:n = 3, k = 7
// 输出:[181,292,707,818,929]
// 解释:注意,070 不是一个有效的数字,因为它有前导零。相关文章:
算法| ss 回溯
39.组合总数46.全排列—478.子集79.单词搜索—1连续差相同的数字—1 39.组合总数 /*** param {number[]} candidates* param {number} target* return {number[][]}*/ // 思路 // dfs传参,传idx, 剩余target // dfs返回: 0 收集,…...
基于R语言绘制-散点小提琴图
原文链接:R语言绘图 | 散点小提琴图 本期教程 写在前面 本期的图形来自发表在Nature期刊中的文章,这样的基础图形在日常分析中使用频率较高。 获得本期教程数据及代码,后台回复关键词:20240405 绘图 设置路径 setwd("You…...
Arduino开发 esp32cam+opencv人脸识别距离+语音提醒
效果图 低于20厘米语音提醒字体变红 Arduino代码 可直接复制使用(修改自己的WIFI) #include <esp32cam.h> #include <WebServer.h> #include <WiFi.h> // 设置要连接的WiFi名称和密码 const char* WIFI_SSID "gumou"; const char* …...
LeNet卷积神经网络
文章目录 简介conv2d网络层的结构 简介 它是最早发布的卷积神经网络之一 conv2d 这个卷积成的参数先进行介绍一下: self.conv1 nn.Conv2d(in_channels3, out_channels10, kernel_size3, stride1, padding1)先看一下in_channels 输入的通道数,out_cha…...
Python常用算法思想--回溯算法思想详解【附源码】
通过回溯算法解决“组合”问题、“排序”问题、“搜索”之八皇后问题、“子集和”之0-1背包问题、字符串匹配等六个经典案例进行介绍: 一、解决“组合”问题 从给定的一组元素中找到所有可能的组合,这段代码中的 backtrack_combinations 函数使用了回溯思想,调用 backtrack…...
Day5-Hive的结构和优化、数据文件存储格式
Hive 窗口函数 案例 需求:连续三天登陆的用户数据 步骤: -- 建表 create table logins (username string,log_date string ) row format delimited fields terminated by ; -- 加载数据 load data local inpath /opt/hive_data/login into table log…...
01 计算机网络发展与分类
计算机网络:计算机技术与通信技术的结合。 阶段一:早期网络:ARPAnet。 阶段二:厂商独立发展阶段 阶段三:标准化阶段:ISO,TCP/IP 计算机网络分类 计算机网络分类1:通信子网和资源子网 通信子…...
ubuntu安装sublime3并设置中文
安装Sublime Text 3 在Ubuntu上安装Sublime Text 3可以通过以下步骤进行: 打开终端。 导入Sublime Text 3的GPG密钥: wget -qO- https://download.sublimetext.com/sublimehq-pub.gpg | sudo apt-key add - 添加Sublime Text 3的存储库: …...
python调用阿里云短信配置
1. 新增资质和签名 # 访问地址: https://dysms.console.aliyun.com/domestic/text/qualification2. 静静等待几十分钟~~~ 3. 通过sdk去调用,查看有没有python的sdk https://next.api.aliyun.com/api/Dysmsapi/2017-05-25/SendSms?完整代码 # -*- cod…...
MySQL 8.0.13安装配置教程
写个博客记录一下,省得下次换设备换系统还要到处翻教程,直接匹配自己常用的8.0.13版本 1.MySQL包解压到某个路径 2.将bin的路径加到系统环境变量Path下 3.在安装根目录下新建my.ini配置文件,并用编辑器写入如下数据 [mysqld] [client] port…...
【idea快捷键】idea开发java过程中常用的快捷键
含义win快捷键mac快捷键复制当前行或选定的代码块Ctrl DCommand D通过类名快速查找类Ctrl NCommand N通过文件名快速查找文件Ctrl Shift NCommand Shift N通过符号名称快速查找符号(类、方法等)Ctrl Alt Shift NCommand Shift O跳转到声明C…...
2024年腾讯云GPU云服务器配置价格表(内存/系统盘/地域)
腾讯云GPU服务器是提供GPU算力的弹性计算服务,腾讯云GPU服务器具有超强的并行计算能力,可用于深度学习训练、科学计算、图形图像处理、视频编解码等场景,腾讯云百科txybk.com整理腾讯云GPU服务器租用价格表、GPU实例优势、GPU解决方案、GPU软…...
重构数据访问层-优化数据访问的开发
重新整理了一下过去开发的框架,在准备开发新项目时候,重新整理了一下思路,感觉数据访问层还是很鸡肋。过去几年中,急于完成项目开发和交付,框架都是迭代过来的,虽然满足了开发需求,但是…...
云计算概述报告
以下是一篇论述类文章 文章目录 I. 云计算介绍(1)云计算基本概念(2)云计算基本特征 II. 云计算发展历程(1)云计算的起源(2)云计算的发展阶段 III. 云计算特点(1ÿ…...
C++:线程库的使用
文章目录 Windows和Linux平台的线程线程构造函数模板参数包 最近发现C11的线程库还没有进行总结,因此本篇对于C11当中新增的线程库的一些基本用法进行总结 Windows和Linux平台的线程 在Linux平台下是存在一些原生的线程系统调用的,比如有pthread_creat…...
机器学习模型:决策树笔记
第一章:决策树原理 1-决策树算法概述_哔哩哔哩_bilibili 根节点的选择应该用哪个特征?接下来选什么?如何切分? 决策树判断顺序比较重要。可以使用信息增益、信息增益率、 在划分数据集前后信息发生的变化称为信息增益,…...
20.2k stars项目搭建私人网盘界面美功能全
Nextcloud是一套用于创建网络硬盘的客户端-服务器软件。其功能与Dropbox相近,但Nextcloud是自由及开放源代码软件,每个人都可以在私人服务器上安装并执行它。 GitHub数据 20.2k stars561 watching3.2k forks 开源地址:https://github.com/ne…...
卷积篇 | YOLOv8改进之引入全维度动态卷积ODConv | 即插即用
前言:Hello大家好,我是小哥谈。ODConv是一种关注了空域、输入通道、输出通道等维度上的动态性的卷积方法,一定程度上讲,ODConv可以视作CondConv的延续,将CondConv中一个维度上的动态特性进行了扩展,同时了考虑了空域、输入通道、输出通道等维度上的动态性,故称之为全维度…...
Pytorch实用教程:torch.from_numpy(X_train)和torch.from_numpy(X_train).float()的区别
在PyTorch中,torch.from_numpy()函数和.float()方法被用来从NumPy数组创建张量,并可能改变张量的数据类型。两者之间的区别主要体现在数据类型的转换上: torch.from_numpy(X_train):这行代码将NumPy数组X_train转换为一个PyTorch张…...
深度学习pytorch好用网站分享
深度学习在线实验室Featurizehttps://featurize.cn/而且这个网站里面还有一些学习教程 免费好用 如何使用 PyTorch 进行图像分类https://featurize.cn/notebooks/5a36fa40-490e-4664-bf98-aa5ad7b2fc2f...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...
