当前位置: 首页 > news >正文

5560.树的直径

蛮不错的一道题目,你要利用树的性质分析出,你只需要维护上一次的树的直径的两个端点就好了

#include<iostream>using namespace std;
using ll = long long;
using pii = pair<int,int>;
const int N = 6e5+10;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+7;
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int lcm(int a,int b){return a*b/gcd(a,b);}
int qmi(int a,int b,int mod){int res=1;while(b){if(b&1)res=res*a%mod;b>>=1;a=a*a%mod;}return res;}int n,q,m;// int e[N],ne[N],w[N],h[N],idx;
// void add(int a,int b,int c){// e[idx] = b,ne[idx] = h[a],w[idx] = c,h[a] = idx++;
// }int dep[N];
int fa[N][22];int lca(int a,int b){if(dep[a]<dep[b])swap(a,b);for(int i=20;i>=0;--i)if(dep[fa[a][i]]>=dep[b])a = fa[a][i];if(a==b)return a;for(int i=20;i>=0;--i)if(fa[a][i]!=fa[b][i])a = fa[a][i],b =fa[b][i];return fa[a][0];}int dist(int a,int b){return dep[a]+dep[b]-2*dep[lca(a,b)];
}void solve()
{cin>>n;dep[2] = dep[3] = dep[4] = 2;dep[1] = 1;fa[1][0] = 0;fa[2][0] = fa[3][0] = fa[4][0] = 1;int tem = 4;int A = 2,B = 3;while(n--){int a;cin>>a;int b = ++tem,c = ++tem;fa[b][0] = a,fa[c][0] = a;dep[b] = dep[a]+1,dep[c] = dep[a]+1;for(int i=1;i<=20;i++)fa[b][i] = fa[fa[b][i-1]][i-1] ;for(int i=1;i<=20;i++)fa[c][i] = fa[fa[c][i-1]][i-1] ;int dista = dist(b,A),distb = dist(b,B);int dists = dist(A,B);//cout<<A<<" "<<B<<" "<<b<<" "<<dista<<" "<<distb<<" "<<dists<<"\n";if(dista<=dists&&distb<=dists){cout<<dists<<"\n";continue;}if(dista>dists&&dista>=distb){B=b;cout<<dista<<"\n";continue;}if(distb>dists){A=b;cout<<distb<<"\n";continue;}}}signed main()
{ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);int _;//cin>>_;_ = 1;while(_--)solve();return 0;
}

相关文章:

5560.树的直径

蛮不错的一道题目&#xff0c;你要利用树的性质分析出&#xff0c;你只需要维护上一次的树的直径的两个端点就好了 #include<iostream>using namespace std; using ll long long; using pii pair<int,int>; const int N 6e510; const int inf 0x3f3f3f3f; cons…...

Decoupled Multimodal Distilling for Emotion Recognition 论文阅读

Decoupled Multimodal Distilling for Emotion Recognition 论文阅读 Abstract1. Introduction2. Related Works2.1. Multimodal emotion recognition2.2. Knowledge distillation3. The Proposed Method3.1. Multimodal feature decoupling3.2. GD with Decoupled Multimodal …...

【css】使用display:inline-block后,元素间存在4px的间隔

问题&#xff1a;在本地项目中使用【display: inline-block】&#xff0c;元素间存在4px间隔。打包后发布到外网又不存在这个问题了。 归根结底这是一个西文排版的问题&#xff0c;英文有空格作为词分界&#xff0c;而中文则没有。 此时的元素具有文本属性&#xff0c;只要标签…...

代码执行漏洞

原理&#xff1a;没有对接口输入的内容进行严格的判断 造成攻击者精心构造的代码非法执行 当应用在调用一些能将字符转化为代码的函数(如PHP中的eval)时&#xff0c;没有考虑用户是否能控 制这个字符串&#xff0c;这就会造成代码执行漏洞。 相 关 函 数 &#xff1a; PHP&…...

SQLServer2022安装

首先从官网上下载2022版本SQL Server 下载 | Microsoft 选择此把呢不能运行&#xff0c;适合我们在学习阶段使用。 同时网页往下滑动&#xff0c;下载SSMS 下载后的文件 注意&#xff1a;在运行时最好获取管理员权限运行&#xff0c;第一次在安装时未获取管理员权限最终…...

vue2 配置@指向src

使用的是vue cli创建的项目。 1.安装 path 如果在 Node.js 环境中运行代码&#xff0c;path 模块默认是可用的&#xff0c;则不需要单独安装&#xff0c;否则输入下面命令安装path npm i path -S 2.找到vue.config.js文件&#xff1a; const { defineConfig } require(vue/…...

用友U9 存在PatchFile.asmx接口任意文件上传漏洞

声明&#xff1a; 本文仅用于技术交流&#xff0c;请勿用于非法用途 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;文章作者不为此承担任何责任。 简介 用友U9是由中国用友软件股份有限公司开发的一款企业…...

如何卸载干净 IDEA(图文讲解)

更新时间 2022-12-20 11:一则或许对你有用的小广告 星球 内第一个项目&#xff1a;全栈前后端分离博客项目&#xff0c;演示地址&#xff1a;Weblog 前后端分离博客, 1.0 版本已经更新完毕&#xff0c;正在更新 2.0 版本。采用技术栈 Spring Boot Mybatis Plus Vue 3.x Vit…...

自动化运维(十)Ansible 之进程管理模块

Ansible的进程管理模块提供了一种强大而灵活的方式来管理和操作各种进程管理器和服务。无论你使用的是Supervisor、Systemd、传统的init脚本还是Runit,这些模块都可以帮助你轻松地管理服务的生命周期。通过合理地使用这些模块,你可以实现服务的自动化管理,提高系统的可靠性和稳…...

【leetcode279】完全平方数,动态规划解法

原问题&#xff1a;给定一个非负整数n&#xff0c;如果把它视作一些完全平方数的和&#xff0c;那么最少需要多少个完全平方数&#xff1f; 这次学习到一个热心网友的解法&#xff1a;把问题转化兑换零钱问题&#xff0c;然后使用动态规划求解。 比如&#xff0c;给定 n12, 那…...

Java 元素排序(数组、List 集合)

数组元素排序 升序 int[] array {3, 1, 4, 5}; Arrays.sort(array);// 升序排序 System.out.println(Arrays.toString(array)); //输出&#xff1a;[1, 3, 4, 5]降序 可以先将数组元素存入 List 集合&#xff0c;然后集合元素逆序&#xff0c;最后将集合元素写回原数组。&a…...

使用vite创建一个react18项目

一、vite是什么&#xff1f; vite 是一种新型前端构建工具&#xff0c;能够显著提升前端开发体验。它主要由两部分组成&#xff1a; 一个开发服务器&#xff0c;它基于原生 ES 模块提供了丰富的内建功能&#xff0c;如速度快到惊人的模块热更新&#xff08;HMR&#xff09;。 …...

子集(迭代)(leetcode 78)

核心逻辑&#xff1a; 根据子数组包含的元素个数迭代&#xff1a; 现有子集的基础上通过添加这个新元素来翻倍子集的数量 f(n)2f(n−1) vector<vector<int>> subsets(vector<int>& nums) {vector<vector<int>> ans;int i,j,k;ans.p…...

汽车疲劳测试试验平台技术要求(北重厂家)

汽车疲劳测试试验平台技术要求通常包括以下几个方面&#xff1a; 车辆加载能力&#xff1a;测试平台需要具备足够的承载能力&#xff0c;能够同时测试多种车型和不同重量的车辆。 动力系统&#xff1a;测试平台需要具备稳定可靠的动力系统&#xff0c;能够提供足够的力和速度来…...

Redis -- 缓存雪崩问题

缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机&#xff0c;导致大量请求到达数据库&#xff0c;带来巨大压力。 可能原因 : 同一时间大量的key到期 ; 解决方案&#xff1a; 给不同的Key的TTL添加随机值 利用Redis集群提高服务的可用性 给缓存业务添加降…...

【ARM 嵌入式 C 文件操作系列 20 -- 文件删除函数 remove 详细介绍】

请阅读【嵌入式开发学习必备专栏 】 文章目录 文件删除函数 remove 文件删除函数 remove 在 C 语言中&#xff0c; 可以使用 remove 函数来删除一个文件&#xff0c;但在删除之前 可能想确认该文件是否存在。 可以使用 stat 函数来检查文件是否存在。 以下是如何实现这个功能…...

LeetCode刷题之31.下一个排列

文章目录 1. 题目2.分析3.解答3.1 先排序&#xff0c;后交换3.2 先交换&#xff0c;后排序 1. 题目 整数数组的一个 排列 就是将其所有成员以序列或线性顺序排列。 例如&#xff0c;arr [1,2,3] &#xff0c;以下这些都可以视作 arr 的排列&#xff1a;[1,2,3]、[1,3,2]、[3…...

【RISC-V 指令集】RISC-V 向量V扩展指令集介绍(九)- 向量定点算术指令

1. 引言 以下是《riscv-v-spec-1.0.pdf》文档的关键内容&#xff1a; 这是一份关于向量扩展的详细技术文档&#xff0c;内容覆盖了向量指令集的多个关键方面&#xff0c;如向量寄存器状态映射、向量指令格式、向量加载和存储操作、向量内存对齐约束、向量内存一致性模型、向量…...

【Java网络编程】IP网络协议与TCP、UDP网络传输层协议

1.1、IP协议 当应用层的数据被封装后&#xff0c;想要将数据在网络上传输&#xff0c;数据究竟要被发往何处&#xff0c;又该如何精准的在网络上定位目标机器&#xff0c;此时起到关键作用的就是“IP协议”。IP协议的作用在于把各种数据包准确无误的传递给目标方&#xff0c;其…...

C# 分布式自增ID算法snowflake(雪花算法)

文章目录 1. 概述2. 结构3. 代码3.1 IdWorker.cs3.2 IdWorkerTest.cs (测试) 1. 概述 分布式系统中&#xff0c;有一些需要使用全局唯一ID的场景&#xff0c;这种时候为了防止ID冲突可以使用36位的UUID&#xff0c;但是UUID有一些缺点&#xff0c;首先他相对比较长&#xff0c…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中&#xff0c;如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议&#xff08;2PC&#xff09;通过准备阶段与提交阶段的协调机制&#xff0c;以同步决策模式确保事务原子性。其改进版本三阶段提交协议&#xff08;3PC&#xf…...

算术操作符与类型转换:从基础到精通

目录 前言&#xff1a;从基础到实践——探索运算符与类型转换的奥秘 算术操作符超级详解 算术操作符&#xff1a;、-、*、/、% 赋值操作符&#xff1a;和复合赋值 单⽬操作符&#xff1a;、--、、- 前言&#xff1a;从基础到实践——探索运算符与类型转换的奥秘 在先前的文…...

sshd代码修改banner

sshd服务连接之后会收到字符串&#xff1a; SSH-2.0-OpenSSH_9.5 容易被hacker识别此服务为sshd服务。 是否可以通过修改此banner达到让人无法识别此服务的目的呢&#xff1f; 不能。因为这是写的SSH的协议中的。 也就是协议规定了banner必须这么写。 SSH- 开头&#xff0c…...

统计学(第8版)——统计抽样学习笔记(考试用)

一、统计抽样的核心内容与问题 研究内容 从总体中科学抽取样本的方法利用样本数据推断总体特征&#xff08;均值、比率、总量&#xff09;控制抽样误差与非抽样误差 解决的核心问题 在成本约束下&#xff0c;用少量样本准确推断总体特征量化估计结果的可靠性&#xff08;置…...