当前位置: 首页 > news >正文

[C#]使用OpencvSharp去除面积较小的连通域

【C++介绍】

关于opencv实现有比较好的算法,可以参考这个博客OpenCV去除面积较小的连通域_c#opencv 筛选小面积区域-CSDN博客

但是没有对应opencvsharp实现同类算法,为了照顾懂C#编程同学们,因此将 去除面积较小的连通域算法转成C#代码。

方法一流程:

//=======函数实现=====================================================================
void RemoveSmallRegion(Mat &Src, Mat &Dst, int AreaLimit, int CheckMode, int NeihborMode)
{int RemoveCount = 0;//新建一幅标签图像初始化为0像素点,为了记录每个像素点检验状态的标签,0代表未检查,1代表正在检查,2代表检查不合格(需要反转颜色),3代表检查合格或不需检查   //初始化的图像全部为0,未检查  Mat PointLabel = Mat::zeros(Src.size(), CV_8UC1);if (CheckMode == 1)//去除小连通区域的白色点  {//cout << "去除小连通域.";for (int i = 0; i < Src.rows; i++){for (int j = 0; j < Src.cols; j++){if (Src.at<uchar>(i, j) < 10){PointLabel.at<uchar>(i, j) = 3;//将背景黑色点标记为合格,像素为3  }}}}else//去除孔洞,黑色点像素  {//cout << "去除孔洞";for (int i = 0; i < Src.rows; i++){for (int j = 0; j < Src.cols; j++){if (Src.at<uchar>(i, j) > 10){PointLabel.at<uchar>(i, j) = 3;//如果原图是白色区域,标记为合格,像素为3  }}}}vector<Point2i>NeihborPos;//将邻域压进容器  NeihborPos.push_back(Point2i(-1, 0));NeihborPos.push_back(Point2i(1, 0));NeihborPos.push_back(Point2i(0, -1));NeihborPos.push_back(Point2i(0, 1));if (NeihborMode == 1){//cout << "Neighbor mode: 8邻域." << endl;NeihborPos.push_back(Point2i(-1, -1));NeihborPos.push_back(Point2i(-1, 1));NeihborPos.push_back(Point2i(1, -1));NeihborPos.push_back(Point2i(1, 1));}else int a = 0;//cout << "Neighbor mode: 4邻域." << endl;int NeihborCount = 4 + 4 * NeihborMode;int CurrX = 0, CurrY = 0;//开始检测  for (int i = 0; i < Src.rows; i++){for (int j = 0; j < Src.cols; j++){if (PointLabel.at<uchar>(i, j) == 0)//标签图像像素点为0,表示还未检查的不合格点  {   //开始检查  vector<Point2i>GrowBuffer;//记录检查像素点的个数  GrowBuffer.push_back(Point2i(j, i));PointLabel.at<uchar>(i, j) = 1;//标记为正在检查  int CheckResult = 0;for (int z = 0; z < GrowBuffer.size(); z++){for (int q = 0; q < NeihborCount; q++){CurrX = GrowBuffer.at(z).x + NeihborPos.at(q).x;CurrY = GrowBuffer.at(z).y + NeihborPos.at(q).y;if (CurrX >= 0 && CurrX<Src.cols&&CurrY >= 0 && CurrY<Src.rows)  //防止越界    {if (PointLabel.at<uchar>(CurrY, CurrX) == 0){GrowBuffer.push_back(Point2i(CurrX, CurrY));  //邻域点加入buffer    PointLabel.at<uchar>(CurrY, CurrX) = 1;           //更新邻域点的检查标签,避免重复检查    }}}}if (GrowBuffer.size()>AreaLimit) //判断结果(是否超出限定的大小),1为未超出,2为超出    CheckResult = 2;else{CheckResult = 1;RemoveCount++;//记录有多少区域被去除  }for (int z = 0; z < GrowBuffer.size(); z++){CurrX = GrowBuffer.at(z).x;CurrY = GrowBuffer.at(z).y;PointLabel.at<uchar>(CurrY, CurrX) += CheckResult;//标记不合格的像素点,像素值为2  }//********结束该点处的检查**********    }}}CheckMode = 255 * (1 - CheckMode);//开始反转面积过小的区域    for (int i = 0; i < Src.rows; ++i){for (int j = 0; j < Src.cols; ++j){if (PointLabel.at<uchar>(i, j) == 2){Dst.at<uchar>(i, j) = CheckMode;}else if (PointLabel.at<uchar>(i, j) == 3){Dst.at<uchar>(i, j) = Src.at<uchar>(i, j);}}}//cout << RemoveCount << " objects removed." << endl;
}
//=======函数实现=====================================================================//=======调用函数=====================================================================Mat img;img = imread("D:\\1_1.jpg", 0);//读取图片threshold(img, img, 128, 255, CV_THRESH_BINARY_INV);imshow("去除前", img);Mat img1;RemoveSmallRegion(img, img, 200, 0, 1);imshow("去除后", img);waitKey(0);
//=======调用函数=====================================================================

此段代码包含一个名为RemoveSmallRegion的函数,其功能是从给定的二值图像中移除符合条件的小连通区域。函数接受五个参数:

  1. Mat &Src: 输入的原始二值图像(单通道,通常为黑白图像)。
  2. Mat &Dst: 输出的目标图像,存储经过处理后的结果。
  3. int AreaLimit: 面积阈值,低于该阈值的连通区域会被移除。
  4. int CheckMode: 检查模式,决定要移除的是图像中的小连通白区还是小连通黑区。
    • CheckMode == 1: 移除小连通白区(白色像素点构成的区域)。
    • CheckMode == 0: 移除小连通黑区(黑色像素点构成的区域)。
  5. int NeihborMode: 邻域模式,决定采用4邻域还是8邻域算法进行连通区域扩展。
    • NeihborMode == 1: 使用8邻域算法(包括上下左右和四个对角方向相邻的像素)。
    • NeihborMode == 0: 使用4邻域算法(仅考虑上下左右相邻的像素)。

函数的具体实现步骤如下:

  1. 初始化RemoveCount变量记录移除的连通区域数量,创建与输入图像相同大小的PointLabel矩阵作为标签图像,用于记录每个像素点的检验状态(0:未检查;1:正在检查;2:检查不合格;3:检查合格或无需检查)。

  2. 根据CheckMode确定移除目标,分别针对小连通白区和小连通黑区对PointLabel进行初始化。对于不需要移除的像素点(即背景或前景),将其标签设为3,表示已检查且合格。

  3. 定义NeihborPos容器存储邻域位置,并根据NeihborMode选择使用4邻域或8邻域。

  4. 使用两层嵌套循环遍历输入图像的所有像素点。对于未检查的像素点(标签为0),执行以下操作:

    • 初始化GrowBuffer容器,用于记录当前连通区域内的像素点。
    • 将当前像素点标记为正在检查(标签设为1),并启动基于邻域扩展的生长过程。
    • 使用广度优先搜索(BFS)策略,依次访问GrowBuffer中的像素点及其邻域像素,将未检查的邻域像素加入GrowBuffer并标记为正在检查。
    • 当遍历完所有邻域像素后,根据GrowBuffer的大小与AreaLimit比较,判断该连通区域是否应被移除。
    • 根据判断结果更新GrowBuffer内所有像素点在PointLabel上的标签为2(检查不合格)或保持为1(检查合格)。
  5. 得到最终的PointLabel后,根据CheckMode255取反(即255 * (1 - CheckMode)),用于后续翻转图像像素值。遍历SrcPointLabel,将标签为2的像素点在Dst中翻转颜色(即将白变黑或黑变白),标签为3的像素点保持原色不变。

最后,代码提供了对RemoveSmallRegion函数的调用示例:

  • 读取图像"D:\1_1.jpg",并对其进行二值化处理(阈值为128,反相)。
  • 显示二值化处理后的原始图像。
  • 调用RemoveSmallRegion函数,移除面积小于200的黑区(CheckMode = 0),使用8邻域算法(NeihborMode = 1)。
  • 显示经过处理后的图像。
  • 等待用户按键后关闭窗口。

方法二流程:

//测试
void CCutImageVS2013Dlg::OnBnClickedTestButton1()
{vector<vector<Point> > contours;       //轮廓数组vector<Point2d>  centers;              //轮廓质心坐标 vector<vector<Point> >::iterator itr;  //轮廓迭代器vector<Point2d>::iterator  itrc;       //质心坐标迭代器vector<vector<Point> > con;            //当前轮廓double area;double minarea = 1000;double maxarea = 0;Moments mom;                          // 轮廓矩Mat image, gray, edge, dst;image = imread("D:\\66.png");cvtColor(image, gray, COLOR_BGR2GRAY);Mat rgbImg(gray.size(), CV_8UC3);    //创建三通道图blur(gray, edge, Size(3, 3));                         //模糊去噪threshold(edge, edge, 200, 255, THRESH_BINARY_INV);   //二值化处理,黑底白字//--------去除较小轮廓,并寻找最大轮廓--------------------------findContours(edge, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); //寻找轮廓itr = contours.begin();             //使用迭代器去除噪声轮廓while (itr != contours.end()){area = contourArea(*itr);       //获得轮廓面积if (area<minarea)               //删除较小面积的轮廓 {itr = contours.erase(itr);  //itr一旦erase,需要重新赋值}else{itr++;}if (area>maxarea)              //寻找最大轮廓{maxarea = area;}}dst = Mat::zeros(image.rows, image.cols, CV_8UC3);/*绘制连通区域轮廓,计算质心坐标*/Point2d center;itr = contours.begin();while (itr != contours.end()){area = contourArea(*itr);		con.push_back(*itr);            //获取当前轮廓if (area == maxarea){vector<Rect> boundRect(1);  //定义外接矩形集合boundRect[0] = boundingRect(Mat(*itr));cvtColor(gray, rgbImg, COLOR_GRAY2BGR);Rect select;select.x = boundRect[0].x;select.y = boundRect[0].y;select.width = boundRect[0].width;select.height = boundRect[0].height;rectangle(rgbImg, select, Scalar(0, 255, 0), 3, 2);  //用矩形画矩形窗drawContours(dst, con, -1, Scalar(0, 0, 255), 2);    //最大面积红色绘制}elsedrawContours(dst, con, -1, Scalar(255, 0, 0), 2);    //其它面积蓝色绘制con.pop_back();//计算质心mom = moments(*itr);center.x = (int)(mom.m10 / mom.m00);center.y = (int)(mom.m01 / mom.m00);centers.push_back(center);itr++;}imshow("rgbImg", rgbImg);//imshow("gray", gray);//imshow("edge", edge);imshow("origin", image);imshow("connected_region", dst);waitKey(0);return;}

提供的代码为一个使用OpenCV库对输入图像"D:\66.png"进行处理的C++实现,执行以下任务:

  1. 图像预处理:

    • 读取图像并将其从BGR色彩空间转换为灰度图像(cvtColor)。
    • 应用高斯模糊,使用大小为3x3的核来减少噪声(blur)。
    • 对模糊后的图像执行二值阈值处理,阈值设为200,将高于该值的像素设置为白色,其余为黑色(threshold)。
  2. 轮廓检测与筛选:

    • 使用findContours函数在二值化图像上查找外部轮廓,存储在contours容器中。
    • 遍历所有轮廓,通过contourArea函数计算每个轮廓的面积。
      • 删除面积小于最小阈值minarea(初始设定为1000)的噪声轮廓,使用迭代器itr进行动态删除。
      • 同时记录下当前遍历到的最大轮廓面积maxarea
    • 最后保留下来的轮廓为满足面积条件的有效轮廓。
  3. 绘制轮廓与计算质心:

    • 创建一个新的Mat对象dst,用于绘制处理结果。
    • 初始化一个空的centers向量,用于存储各个轮廓的质心坐标。
    • 再次遍历有效轮廓:
      • 将当前轮廓添加到临时向量con中。
      • 计算当前轮廓面积。
      • 如果面积等于最大面积maxarea,则执行以下操作:
        • 计算当前轮廓的外接矩形,并用绿色边框在RGB图像rgbImg上绘制。
        • 在最终输出图像dst上以红色绘制当前轮廓。
      • 否则,在dst上以蓝色绘制当前轮廓。
      • 使用moments函数计算当前轮廓的矩,进而得到质心坐标,并将其添加到centers向量。
      • 清除临时向量con中的当前轮廓。
    • 显示各阶段处理结果:
      • RGB图像rgbImg(仅包含最大轮廓的绿色外接矩形)。
      • 原始灰度图像gray(注释掉未显示)。
      • 二值边缘图像edge(注释掉未显示)。

【C#版本效果展示】

方法一使用opencvsharp效果:

方法二opencvsharp效果:

可见已经用opencvsharp复刻C++版本算法。

【测试环境】

vs2019

netframework4.7.2

opencvsharp4.8.0

【源码下载地址】

https://download.csdn.net/download/FL1623863129/89074335

相关文章:

[C#]使用OpencvSharp去除面积较小的连通域

【C介绍】 关于opencv实现有比较好的算法&#xff0c;可以参考这个博客OpenCV去除面积较小的连通域_c#opencv 筛选小面积区域-CSDN博客 但是没有对应opencvsharp实现同类算法&#xff0c;为了照顾懂C#编程同学们&#xff0c;因此将 去除面积较小的连通域算法转成C#代码。 方…...

联邦学习目前面临的挑战以及解决方案

学习目标&#xff1a; 联邦学习目前面临的挑战以及解决方案 学习内容&#xff1a; 联邦学习是一种新兴的人工智能基础技术&#xff0c;它在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下&#xff0c;在多参与方或多计算结点之间开展高效率的…...

Day60:WEB攻防-XMLXXE安全无回显方案OOB盲注DTD外部实体黑白盒挖掘

目录 XML&XXE-传输-原理&探针&利用&玩法 XXE 黑盒发现 XXE 白盒发现 XXE修复防御方案 有回显 无回显 XML&XXE-黑盒-JSON&黑盒测试&类型修改 XML&XXE-白盒-CMS&PHPSHE&无回显 知识点&#xff1a; 1、XXE&XML-原理-用途&…...

解锁网络安全新境界:雷池WAF社区版让网站防护变得轻而易举!

网站运营者的救星&#xff1a;雷池WAF社区版 ️ 嘿朋友们&#xff01;今天我超级激动要跟你们分享一个神器——雷池WAF社区版。这个宝贝对我们这帮网站运营者来说&#xff0c;简直就是保护伞&#xff01; 智能语义分析技术&#xff1a;超级侦探上线 先说说为啥我这么稀饭它。雷…...

RabbitMQ安装详细教程

&#xff08;一&#xff09;在Windows系统上安装Erlang的步骤如下&#xff1a; 打开Erlang的官方下载页面&#xff0c;选择适合你的Windows系统的版本进行下载。 下载完成后&#xff0c;双击运行下载的.exe文件&#xff0c;进入Erlang的安装向导。 在安装向导中&#xff0c;按…...

如何快速写出一个完整的测试用例

测试用例是为了验证软件功能或需求而设计的一组测试输入、执行条件和预期结果。编写测试用例的目的是确保测试过程全面高效、有据可查。 一般来说&#xff0c;编写测试用例的流程包括以下几个步骤&#xff1a; 分析需求&#xff1a;阅读需求文档&#xff0c;理解软件的功能和业…...

Docker容器与虚拟化技术:OpenEuler 部署 ES 与 Kibana

目录 一、实验 1.环境 2.OpenEuler 部署 ES (EalasticSearch) 3.OpenEuler 部署 Kibana 4.部署 Elasticvue插件 5.使用cpolar内网穿透 6.使用Elasticvue 一、实验 1.环境 &#xff08;1&#xff09;主机 表1 主机 系统架构版本IP备注LinuxopenEuler22.03 LTS SP2 1…...

数学中的各种符号虚数概念

max i∈S​A i ​ ≥ ∑ i∈S​B i​. 这个不等式表达的意思是对于集合 S 中的任意非空子集&#xff0c;子集中的最大的 A_i&#xff08;A 的元素&#xff09;的值都大于等于子集中所有 B_i&#xff08;B 的元素&#xff09;的值的总和。换句话说&#xff0c;集合 S 中的最大…...

什么是中间件

中间件是指在应用程序与操作系统之间提供服务的软件&#xff0c;它可以隐藏底层操作系统的复杂性&#xff0c;为应用程序提供各种实用的服务&#xff0c;以便应用程序更好地实现业务逻辑。中间件通常提供如下几种服务&#xff1a; 数据库连接&#xff1a;中间件可以为应用程序提…...

RabbitMQ面经 手敲浓缩版

保证可靠性 生产者 本地事务完成和消息发送同时完成 通过事务消息完成 重写confirm在里面做逻辑处理 确保发送成功&#xff08;不成功就放入到重试队列&#xff09; MQ 打开持久化确保消息不会丢失 消费者 改成手动回应 不重复消费 生产者 保证不重复发送消息 消费者…...

解锁金融数据中心场景,实现国产化AD替代,宁盾身份域管为信创电脑、应用提供统一管理

随着信创国产化改造持续推进&#xff0c;越来越多的金融机构不断采购信创服务器、PC、办公软件等&#xff0c;其 IT 基础设施逐渐迁移至国产化 IT 架构下。为支撑国产化 IT 基础设施的正常使用和集中管理运维&#xff0c;某金融机构数据中心的微软Active Directory&#xff08;…...

Django的js文件没有响应(DOMContentLoaded)

问题出现的原因是因为当浏览器解析到“script”标签并执行其中的JavaScript代码时&#xff0c;页面上的DOM元素尚未完全加载和渲染。这意味着&#xff0c;当尝试通过document.getElementById(‘create-theme-button’)获取元素时&#xff0c;该元素还不存在&#xff0c;导致add…...

滑动窗口代码模板

代码模板&#xff1a; //滑动窗口伪代码 class Solution { public:int minWindow(string s) {// 同方向移动&#xff0c;起始的时候&#xff0c;都位于 0&#xff0c;表示我们定义搜索区间为 [left, right) &#xff0c;此时区间为空区间int left 0;int right 0;while(right…...

SpringBoot实现邮箱验证

目录 1、开启邮箱IMAP/SMTP服务&#xff0c;获取授权码 2、相关代码 1、使用配置Redis&#xff08;用于存储验证码&#xff0c;具有时效性&#xff09; 2、邮箱依赖和hutool&#xff08;用于随机生成验证码&#xff09; 3、配置Redis和邮箱信息 4、开启Redis服务 5、编写发送…...

Mac安装Docker提示Another application changed your Desktop configuration解决方案

1. 问题描述 Mac安装Docker后&#xff0c;提示Another application changed your Desktop configuration&#xff0c;Re-apply configurations无效 2. 解决方案 在终端执行下述命令即可解决&#xff1a; sudo ln -sf /Applications/Docker.app/Contents/Resources/bin/docke…...

5分钟安装docker和docker compose环境

5分钟安装docker和docker compose环境 5分钟安装docker和docker compose环境环境介绍卸载docker环境安装docker安装docker compose 5分钟安装docker和docker compose环境 你好&#xff01; 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑…...

leetcode热题100.跳跃游戏2

Problem: 45. 跳跃游戏 II 文章目录 题目思路复杂度Code 题目 给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。 每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说&#xff0c;如果你在 nums[i] 处&#xff0c;你可以跳转到任意 nums[i j] 处: …...

【前端】CSS(引入方式+选择器+常用元素属性+盒模型+弹性布局)

文章目录 CSS一、什么是CSS二、语法规范三、引入方式1.内部样式表2.行内样式表3.外部样式 四、选择器1.选择器的种类1.基础选择器&#xff1a;单个选择器构成的1.标签选择器2.类选择器3.id 选择器4.通配符选择器 2.复合选择器1.后代选择器2.子选择器3.并集选择器4.伪类选择器 五…...

迷茫下是自我提升

长夜漫漫&#xff0c;无心睡眠。心中所想&#xff0c;心中所感&#xff0c;忧愁当前&#xff0c;就执笔而下&#xff0c;写下这篇文章。 回忆过往 回想当初为啥学前端&#xff0c;走前端这条路&#xff0c;学校要求嘛&#xff0c;兴趣爱好嘛&#xff0c;还是为了钱。 时间带着…...

用vscode仿制小米官网

html内容: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><link rel&quo…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...