Python学习从0开始——005数据结构
Python学习从0开始——005数据结构
- 一、列表list
- 二、元组和序列
- 三、集合
- 四、字典
- 五、循环技巧
- 六、条件控制
- 七、序列和其它类型的比较
一、列表list
不是所有数据都可以排序或比较。例如,[None, ‘hello’, 10] 就不可排序,因为整数不能与字符串对比,而 None 不能与其他类型对比。有些类型根本就没有定义顺序关系,例如,3+4j < 5+7j 这种对比操作就是无效的。
>>> fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']
#返回列表中元素 x 出现的次数
>>> fruits.count('apple')
2
#索引
>>> fruits.index('banana')
3
#从索引4开始查找
>>> fruits.index('banana', 4)
6
#反转
>>> fruits.reverse()
>>> fruits
['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange']
#末尾添加
>>> fruits.append('grape')
>>> fruits
['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange', 'grape']
#排序
>>> fruits.sort()
>>> fruits
['apple', 'apple', 'banana', 'banana', 'grape', 'kiwi', 'orange', 'pear']
#移除并返回
>>> fruits.pop()
'pear'
列表推导式:
>>> squares = []
>>> for x in range(10):
... squares.append(x**2)
...
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]#简洁版
>>> squares=[]
>>> squares = [x**2 for x in range(10)]
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
#元组
>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]#嵌套的列表
>>> matrix = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
... ]
#进行转置
>>> [[row[i] for row in matrix] for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
列表推导式的方括号内包含以下内容:一个表达式,后面为一个 for 子句,然后是零个或多个 for 或 if 子句。结果是由表达式依据 for 和 if 子句求值计算而得出一个新列表。表达式是元组(例如上例的 (x, y))时,必须加上括号。
二、元组和序列
输出时,元组都要由圆括号标注,这样才能正确地解释嵌套元组。输入时,圆括号可有可无,不过如果元组是更大的表达式的一部分会经常加上。不允许为元组中的单个元素赋值,但是可以创建含列表等可变对象的元组。
元组是 immutable (不可变的),一般可包含异质元素序列,通过解包或索引访问(如果是 namedtuples,可以属性访问)。列表是 mutable (可变的),列表元素一般为同质类型,可迭代访问。
构造 0 个或 1 个元素的元组比较特殊:为了适应这种情况,对句法有一些额外的改变。用一对空圆括号就可以创建空元组;只有一个元素的元组可以通过在这个元素后添加逗号来构建(圆括号里只有一个值的话不够明确)。
>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
#不可变
>>> t[0] = 88888
Traceback (most recent call last):File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> v = ([1, 2, 3], [3, 2, 1])
>>> v
([1, 2, 3], [3, 2, 1])#用一对空圆括号就可以创建空元组
>>> empty = ()
#通过在这个元素后添加逗号来构建
>>> singleton = 'hello',
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
('hello',)
三、集合
集合是由不重复元素组成的无序容器。基本用法包括成员检测、消除重复元素。集合对象支持合集、交集、差集、对称差分等数学运算。
创建集合用花括号或 set() 函数。注意,创建空集合只能用 set(),不能用 {},{} 创建的是空字典。
>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> 'orange' in basket
True
>>> 'crabgrass' in basket
False
#去重
>>> basket
{'banana', 'orange', 'apple', 'pear'}>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a
{'r', 'c', 'a', 'd', 'b'}
>>> b
{'m', 'c', 'a', 'z', 'l'}
#a有b无
>>> a-b
{'d', 'r', 'b'}
#b有a无
>>> b-a
{'m', 'l', 'z'}
#或
>>> a|b
{'m', 'r', 'c', 'a', 'z', 'd', 'l', 'b'}
#与
>>> a&b
{'a', 'c'}
#异或
>>> a^b
{'m', 'd', 'r', 'l', 'z', 'b'}
四、字典
字典是以 键 进行索引的,键可以是任何不可变类型;字符串和数字总是可以作为键。 如果一个元组只包含字符串、数字或元组则也可以作为键;如果一个元组直接或间接地包含了任何可变对象,则不能作为键。 列表不能作为键,因为列表可以使用索引赋值、切片赋值或者 append() 和 extend() 等方法进行原地修改列表。
可以把字典理解为键值对的集合,但字典的键必须是唯一的。花括号 {} 用于创建空字典。另一种初始化字典的方式是,在花括号里输入逗号分隔的键值对,这也是字典的输出方式。
字典的主要用途是通过关键字存储、提取值。用 del 可以删除键值对。用已存在的关键字存储值,与该关键字关联的旧值会被取代。通过不存在的键提取值,则会报错。
对字典执行 list(d) 操作,返回该字典中所有键的列表,按插入次序排列(如需排序,请使用 sorted(d))。检查字典里是否存在某个键,使用关键字 in。
>>> tel = {'jack': 4098, 'sape': 4139}
#由键取值
>>> tel['jack']
4098
#无则添加
>>> tel['guido'] = 4127
>>> tel
{'jack': 4098, 'sape': 4139, 'guido': 4127}
#可赋值
>>> tel['irv'] = 4127
>>> tel
{'jack': 4098, 'sape': 4139, 'guido': 4127, 'irv': 4127}
#由键删除
>>> del tel['sape']
>>> tel
{'jack': 4098, 'guido': 4127, 'irv': 4127}
>>> list(tel)
['jack', 'guido', 'irv']
#值排序
>>> sorted(tel)
['guido', 'irv', 'jack']
>>> 'guido' in tel
True
>>> 'jack' not in tel
False
#其它创建方式
>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}
>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'guido': 4127, 'jack': 4098}
五、循环技巧
#对字典执行循环时,可以使用 items() 方法同时提取键及其对应的值。
>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.items():
... print(k, v)
...
gallahad the pure
robin the brave#在序列中循环时,用 enumerate() 函数可以同时取出位置索引和对应的值:
>>> for i, v in enumerate(['tic', 'tac', 'toe']):
... print(i, v)
...
0 tic
1 tac
2 toe
#同时循环两个或多个序列时,用 zip() 函数可以将其内的元素一一匹配:
>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
... print('What is your {0}? It is {1}.'.format(q, a))
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.
#为了逆向对序列进行循环,可以求出欲循环的正向序列,然后调用 reversed() 函数
>>> for i in reversed(range(1, 10, 2)):
... print(i)
...
9
7
5
3
1
#按指定顺序循环序列,可以用 sorted() 函数,在不改动原序列的基础上,返回一个重新的序列:
>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for i in sorted(basket):
... print(i)
...
apple
apple
banana
orange
orange
pear
#set() 去重,使用 sorted() 加 set() 则按排序后的顺序,循环遍历序列中的唯一元素:
>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set(basket)):
... print(f)
...
apple
banana
orange
pear#在循环中修改列表的内容时,创建新列表比较简单,且安全:
>>> import math
>>> raw_data = [56.2, float('NaN'), 51.7, 55.3, 52.5, float('NaN'), 47.8]
>>> filtered_data = []
>>> for value in raw_data:
... if not math.isnan(value):
... filtered_data.append(value)
...
>>> filtered_data
[56.2, 51.7, 55.3, 52.5, 47.8]
六、条件控制
运算符优先级:数值运算符>比较运算符>布尔运算符。
比较运算符 in 和 not in 用于执行确定一个值是否存在(或不存在)于某个容器中的成员检测。 运算符 is 和 is not 用于比较两个对象是否是同一个对象。 所有比较运算符的优先级都一样,且低于任何数值运算符。比较操作支持链式操作。例如,a < b == c 校验 a 是否小于 b,且 b 是否等于 c。
比较操作可以用布尔运算符 and 和 or 组合,并且结果都可以用 not 取反。这些操作符的优先级低于比较操作符;not 的优先级最高, or 的优先级最低,因此,A and not B or C 等价于 (A and (not B)) or C。与其他运算符操作一样,此处也可以用圆括号表示想要的组合。
布尔运算符 and 和 or 是所谓的 短路 运算符:其参数从左至右求值,一旦可以确定结果,求值就会停止。例如,如果 A 和 C 为真,B 为假,那么 A and B and C 不会对 C 求值。用作普通值而不是布尔值时,短路运算符的返回值通常是最后一个求了值的参数。
Python 与 C 不同,在表达式内部赋值必须显式使用 海象运算符 :=。
七、序列和其它类型的比较
序列对象可以与相同序列类型的其他对象比较。这种比较使用 字典式 顺序:首先,比较前两个对应元素,如果不相等,则可确定比较结果;如果相等,则比较之后的两个元素,以此类推,直到其中一个序列结束。如果要比较的两个元素本身是相同类型的序列,则递归地执行字典式顺序比较。如果两个序列中所有的对应元素都相等,则两个序列相等。如果一个序列是另一个的初始子序列,则较短的序列可被视为较小(较少)的序列。 对于字符串来说,字典式顺序使用 Unicode 码位序号排序单个字符。
当比较不同类型的对象时,只要待比较的对象提供了合适的比较方法,就可以使用 < 和 > 进行比较。例如,混合的数字类型通过数字值进行比较,所以,0 等于 0.0,等等。如果没有提供合适的比较方法,解释器不会随便给出一个比较结果,而是引发 TypeError 异常。
>>> (1, 2, 3) < (1, 2, 4)
True
>>> [1, 2, 3] < [1, 2, 4,5]
True
>>> [1, 2, 3] < [1, 2]
False
>>> [1, 2, 3] < [1, 2, 3,5]
True
>>> (1, 2, 3, 4) < (1, 2, 4)
True
>>> (1, 2, 3) == (1.0, 2.0, 3.0)
True
>>> (1, 2) < (1, 2, -1)
True
>>> (1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)
True
>>> 'ABC' < 'C' < 'Pascal' < 'Python'
True
相关文章:
Python学习从0开始——005数据结构
Python学习从0开始——005数据结构 一、列表list二、元组和序列三、集合四、字典五、循环技巧六、条件控制七、序列和其它类型的比较 一、列表list 不是所有数据都可以排序或比较。例如,[None, ‘hello’, 10] 就不可排序,因为整数不能与字符串对比&…...

力扣每日一题:LCR112--矩阵中的最长递增路径
题目 给定一个 m x n 整数矩阵 matrix ,找出其中 最长递增路径 的长度。 对于每个单元格,你可以往上,下,左,右四个方向移动。 不能 在 对角线 方向上移动或移动到 边界外(即不允许环绕)。 示例…...

树莓派部署yolov5实现目标检测(ubuntu22.04.3)
最近两天搞了一下树莓派部署yolov5,有点难搞(这个东西有点老,版本冲突有些包废弃了等等) 最后换到ubuntu系统弄了,下面是我的整体步骤(建议先使能一下ssh(最下面有),结合…...

2024 年最新使用 Wechaty 开源框架搭建部署微信机器人(微信群智能客服案例)
读取联系人信息 获取当前机器人账号全部联系人信息 bot.on(ready, async () > {console.log("机器人准备完毕!!!")let contactList await bot.Contact.findAll()for (let index 0; index < contactList.length; index) {…...

Redis从入门到精通(九)Redis实战(六)基于Redis队列实现异步秒杀下单
↑↑↑请在文章开头处下载测试项目源代码↑↑↑ 文章目录 前言4.5 分布式锁-Redisson4.5.4 Redission锁重试4.5.5 WatchDog机制4.5.5 MutiLock原理 4.6 秒杀优化4.6.1 优化方案4.6.2 完成秒杀优化 4.7 Redis消息队列4.7.1 基于List实现消息队列4.7.2 基于PubSub的消息队列4.7.…...

什么是多路复用器滤波器
本章将更深入地介绍多路复用器滤波器,以及它们如何用于各种应用中。您将了解到多路复用器如何帮助设计人员创造出更复杂的无线产品。 了解多路复用器 多路复用器是一组射频(RF)滤波器,它们组合在一起,但不会彼此加载,可以在输出之…...

Severt和tomcat的使用(补充)
打包程序 在pom.xml中添加上述代码之后打包时会生成war包并且包的名称是test 默认情况打的是jar包.jar里量但是tomcat要求的是war包. war包Tomcat专属的压缩包. war里面不光有.class还有一些tomcat要求的配置文件(web.xml等)还有前端的一些代码(html, css, js) 点击其右边的m…...

JavaEE初阶——多线程(一)
T04BF 👋专栏: 算法|JAVA|MySQL|C语言 🫵 小比特 大梦想 此篇文章与大家分享多线程的第一部分:引入线程以及创建多线程的几种方式 此文章是建立在前一篇文章进程的基础上的 如果有不足的或者错误的请您指出! 1.认识线程 我们知道现代的cpu大多都是多核心…...
MongoDB主从复制模式基于银河麒麟V10系统
MongoDB主从复制模式基于银河麒麟V10系统 背景介绍 MongoDB自4.0版本开始已经不再建议使用传统的master/slave复制架构,而是全面采用了复制集(Replica Sets)作为标准的复制和高可用性解决方案。 复制集是MongoDB的一种数据复制和高可用性机制,通过异步同步数据至多个服务…...

Vue使用高德地图
1.在高德平台注册账号 2.我的 > 管理管理中添加Key 3.安装依赖 npm i amap/amap-jsapi-loader --save 或 yarn add amap/amap-jsapi-loader --save 4.导入 AMapLoade import AMapLoader from amap/amap-jsapi-loader; 5.直接上代码,做好了注释(初始化…...
2024-04-07(复盘前端)
---HTML 1.HTMl骨架 html:整个网页 head:网页头部,用来存放给浏览器看的信息,如css body:网页主体,用来存放给用户看的信息,例如图片和文字 2.标题标签中h1标签只能使用一次,其…...

SpringCloud学习(10)-SpringCloudAlibaba-Nacos服务注册、配置中心
Spring Cloud Alibaba 参考文档 Spring Cloud Alibaba 参考文档 nacos下载Nacos 快速开始 直接进入bin包 运行cmd命令:startup.cmd -m standalone 运行成功后通过http://localhost:8848/nacos进入nacos可视化页面,账号密码默认都是nacos Nacos服务注…...
OKCC外呼中心配置的电话系统规则
OKCC外呼中心配置电话系统规则可能涉及多个方面,包括呼叫路由、自动化流程、电话接听策略等。以下是一般步骤及注意事项: 呼叫路由配置: 确定呼叫中心的呼叫路由策略,包括如何分配呼叫给不同的坐席或部门。设置呼叫路由规则&#…...
AI推介-大语言模型LLMs论文速览(arXiv方向):2024.03.31-2024.04.05
文章目录~ 1.AutoWebGLM: Bootstrap And Reinforce A Large Language Model-based Web Navigating Agent2.Training LLMs over Neurally Compressed Text3.Unveiling LLMs: The Evolution of Latent Representations in a Temporal Knowledge Graph4.Visualization-of-Thought …...
性能测试工具 ab(Apache Bench)使用详解
Apache Bench (ab) 是一个由 Apache 提供的非常流行的、简单的性能测试工具,用于对 HTTP 服务器进行压力测试。下面是 ab 工具的一些基本使用方法。 安装 在大多数 Unix 系统中,ab 通常作为 Apache HTTP 服务器的一部分预装在系统中。你可以通过在终端…...

智能网联汽车自动驾驶数据记录系统DSSAD数据元素
目录 第一章 数据元素分级 第二章 数据元素分类 第三章 数据元素基本信息表 表1 车辆及自动驾驶数据记录系统基本信息 表2 车辆状态及动态信息 表3 自动驾驶系统运行信息 表4 行车环境信息 表5 驾驶员操作及状态信息 第一章 数据元素分级 自动驾驶数据记录系统记录的数…...

Ubuntu 20.04.06 PCL C++学习记录(十八)
[TOC]PCL中点云分割模块的学习 学习背景 参考书籍:《点云库PCL从入门到精通》以及官方代码PCL官方代码链接,,PCL版本为1.10.0,CMake版本为3.16 学习内容 PCL中实现欧式聚类提取。在点云处理中,聚类是一种常见的任务,它将点云数据划分为多…...

细雨踏春日,新会公安护平安
春雨起,清明至。又是一年春草绿,又是一年清明时。细雨踏春日,思怀故人时,是哀思,亦是相聚。新会公安一抹抹葵乡春日“警”色坚守岗位,确保清明祭扫平稳有序,为人民群众的平安保驾护航。 为确保2…...

3d怎么在一块模型上开个孔---模大狮模型网
在进行3D建模时,有时候需要在模型上创建孔,以实现特定的设计需求或功能。无论是为了添加细节,还是为了实现功能性的要求,创建孔都是常见的操作之一。本文将介绍在3D模型上创建孔的几种常用方法,帮助您轻松实现这一目标…...

Python景区票务人脸识别系统(V2.0),附源码
博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…...

【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...