当前位置: 首页 > news >正文

极客时间: 用 Word2Vec, LangChain, Gemma 模拟全本地检索增强生成(RAG)

  每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

最近,Apple的研究人员推出了ReALM,紧随Google的Gemma、Meta的Llama以及微软的其他几个产品之后,完全本地运行大型语言模型(LLM)的应用越来越受到关注。我在《宅乐时光:用Gemma在本地玩LangChain 2》中尝试了本地运行Langchain,唯一缺失的是嵌入部分。为了在本地完整模拟RAG,我在以下代码中添加了word2vec嵌入。

import json
import numpy as np
from gensim.models import KeyedVectors
from langchain_community.llms import Ollama 
import logging# 基础日志配置
logging.basicConfig(level=logging.INFO)# 使用预训练的Word2Vec模型计算嵌入
def compute_embeddings(text, embedding_model):words = [word for word in text.split() if word in embedding_model.key_to_index]if words:return np.mean([embedding_model[word] for word in words], axis=0)else:return np.zeros(embedding_model.vector_size)# 加载预训练的Word2Vec嵌入
try:model_path = 'GoogleNews-vectors-negative300.bin'  # 模型下载正确路径embedding_model = KeyedVectors.load_word2vec_format(model_path, binary=True)
except Exception as e:logging.error(f"加载Word2Vec模型失败: {e}")# 从JSON加载数据
try:with open('my_data.json', 'r') as file:data = json.load(file)
except Exception as e:logging.error(f"加载JSON数据错误: {e}")data = []def simulate_rag(data, prompt):matches = []threshold = 0.4  # 余弦相似度示例阈值prompt_embedding = compute_embeddings(prompt, embedding_model)for passage in data:combined_text = f"{passage['title']} {passage['content']}".lower()passage_embedding = compute_embeddings(combined_text, embedding_model)similarity = np.dot(prompt_embedding, passage_embedding) / (np.linalg.norm(prompt_embedding) * np.linalg.norm(passage_embedding))print(f"passage: {passage}")print(f"Similarity: {similarity}")if similarity > threshold:matches.append(passage)return matches[:2]  # 返回前2个检索的段落prompt = "Nedved Yang喜欢吃什么?你能推荐新加坡的哪个地方给他吃吗?"# 从本地数据检索相关段落
retrieved_passages = simulate_rag(data, prompt)
print(f"**检索到的段落:**\n{retrieved_passages}")# 构建LLM提示
llm_prompt = f"用户查询: {prompt}\n\n检索到的信息:\n"
for passage in retrieved_passages:llm_prompt += f"- {passage['title']}:\n  - {passage['content']}\n  - 来源: {passage['source']}\n"print(f"**LLM提示:**\n{llm_prompt}")
llm = Ollama(model="gemma:2b")
llm_response = llm.invoke(llm_prompt)  # 替换您的LLM交互方法
final_response = f"**LLM回应:**\n{llm_response}"# 打印最终回应
print(final_response)

在使用word2vec进行本地嵌入前,您需要从网上下载它,例如从​​​​​​https://github.com/harmanpreet93/load-word2vec-google?tab=readme-ov-file。然后,您可以加载它来计算嵌入。我遇到了一个问题,即`retrieved_passages`返回为空。通过下面的手动测试,我发现根本原因是相似度低于阈值。

# 示例手动测试prompt_embedding = compute_embeddings("Nedved Yang喜欢吃什么?", embedding_model)
example_entry = "Nedved Yang喜欢辛辣和素食菜肴。"
entry_embedding = compute_embeddings(example_entry, embedding_model)
similarity = np.dot(prompt_embedding, entry_embedding) / (np.linalg.norm(prompt_embedding) * np.linalg.norm(entry_embedding))
print(f"Similarity: {similarity}")

在调整阈值后,来自Gemma的回应看起来不错。

试试看,玩得开心!

相关文章:

极客时间: 用 Word2Vec, LangChain, Gemma 模拟全本地检索增强生成(RAG)

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...

VBA操作Word

检查word中的字体情况 Sub ListAllFontsInDocument()Dim doc As DocumentDim rng As RangeDim char As RangeDim fontName As StringDim uniqueFonts As Collection 初始化集合用于存储唯一字体名称Set uniqueFonts New Collection 获取当前活动文档Set doc ActiveDocument …...

Linux文件IO(4):目录操作和文件属性获取

目录 1. 前言 2. 函数介绍 2.1 访问目录 – opendir 2.2 访问目录 – readdir 2.3 访问目录 – closedir 2.4 修改文件访问权限 – chmod/fchmod 2.5 获取文件属性 – stat/lstat/fstat 2.5.1 文件属性 – struct stat 2.6 文件类型 – st_mode 3. 代码练习 3.1 要求 3.2 代…...

【C语言】_文件类型,结束判定与文件缓冲区

目录 1. 文本文件和二进制文件 2. 文件读取结束的判定 3. 文件缓冲区 1. 文本文件和二进制文件 根据数据的组织形式,数据文件被称为文本文件或二进制文件; 数据在内存中以二进制的形式存储,如果不加转换地输出到外存,就是二进…...

YOLOV8注意力改进方法:DoubleAttention(附代码)

原论文地址:原论文地址 DoubleAttention网络结构的优点在于,它能够有效地捕获图像中不同位置和不同特征的重要性,从而提高了图像识别和分割的性能。 论文相关内容介绍: 论文摘要:学习捕捉远程关系是图像/视频识别的…...

每日一题 --- 前 K 个高频元素[力扣][Go]

前 K 个高频元素 题目:347. 前 K 个高频元素 给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。 示例 1: 输入: nums [1,1,1,2,2,3], k 2 输出: [1,2]示例 2: 输入: nums [1], k 1 输出: …...

Rust所有权和Move关键字使用和含义讲解,以及Arc和Mutex使用

Rust 所有权规则 一个值只能被一个变量所拥有,这个变量被称为所有者。 一个值同一时刻只能有一个所有者,也就是说不能有两个变量拥有相同的值。所以对应变量赋值、参数传递、函数返回等行为,旧的所有者会把值的所有权转移给新的所有者&#…...

【YOLOV5 入门】——构建自己的数据集模型训练模型检验

一、准备工作 1、数据收集 图片类型数据不用多说;视频类型数据利用opencv进行抽帧保存为一张张图片,这里选取30s的名侦探柯南片段进行试验,确保环境解释器下安装了opencv(我使用的是另一个虚拟环境): im…...

MacBook 访达使用技巧【mac 入门】

快捷键 打开访达搜索窗口默认快捷键【⌥ ⌘ 空格键】可以在键盘【系统偏好设置 -> 键盘->快捷键->聚焦】修改 但是我不会去修改它,因为我不常用访达的搜索窗口,更多的是想快速打开访达文件夹窗口,可以通过第三方软件定义访达的快…...

常见溯源,反溯源,判断蜜罐手段

常见溯源,反溯源,判断蜜罐手段 1.溯源手段2.反溯源手段3.如何判断蜜罐🍯4.案例:MySQL读文件蜜罐 1.溯源手段 IP地址追踪:通过IP地址追踪可以确定攻击者的地理位置和ISP信息等;通过攻击IP历史解析记录/域名…...

蓝桥杯刷题-09-三国游戏-贪心⭐⭐⭐

蓝桥杯2023年第十四届省赛真题-三国游戏 小蓝正在玩一款游戏。游戏中魏蜀吴三个国家各自拥有一定数量的士兵X, Y, Z (一开始可以认为都为 0 )。游戏有 n 个可能会发生的事件,每个事件之间相互独立且最多只会发生一次,当第 i 个事件发生时会分别让 X, Y,…...

Windows编译运行TensorRT-YOLOv9 (C++)

Windows编译运行yolov9-bytetrack-tensorrt(C) 1 基础环境2 编译yolov9-bytetrack-tensorrt(1)下载yolov9-bytetrack-tensorrt源码(2)修改CMakeLists.txt(3)CMake编译 3 yolov9模型转…...

.NET 设计模式—简单工厂(Simple Factory Pattern)

简介 简单工厂模式(Simple Factory Pattern)属于类的创建型模式,又叫静态工厂方法模式(Static FactoryMethod Pattern),是通过一个工厂类来创建对象,根据不同的参数或条件返回相应的对象实例。这种模式隐藏…...

聊聊Linux内核中内存模型

介绍 在Linux中二进制的程序从磁盘加载到内存,运行起来后用户态是使用pid来唯一标识进程,对于内核都是以task_struct表示。二进制程序中的数据段、代码段、堆都能提现在task_struct中。每一个进程都有自己的虚拟地址空间,虚拟地址空间包含几…...

docker自动化部署示例

前提 安装docker 、 docker-cpmpose、git、打包环境(如meaven、jdk、node等) 原理 git Dockerfile docker-compose 获取源码(代码仓库)获取可运行程序的镜像(docker)将打包后的程序放入镜像内&#xf…...

Redis精品案例解析:Redis实现持久化主要有两种方式

Redis实现持久化主要有两种方式:RDB(Redis DataBase)和AOF(Append Only File)。这两种方式各有优缺点,适用于不同的使用场景。 1. RDB持久化 RDB持久化是通过创建一个二进制的dump文件来保存当前Redis数据…...

Python | Leetcode Python题解之第14题最长公共前缀

题目: 题解: class Solution:def longestCommonPrefix(self, strs: List[str]) -> str:def isCommonPrefix(length):str0, count strs[0][:length], len(strs)return all(strs[i][:length] str0 for i in range(1, count))if not strs:return &quo…...

烧坏两块单片机,不知道原因?

没有看你的原理图,以下是造成烧毁芯片的几个环节: 1. 最大的可能性是你的单片机电机控制输出与电机驱动电路没有隔离。 我的经验,使用STM32控制电机,无论是直流电机脉宽调制,还是步进电机控制,控制电路与…...

SV学习笔记(八)

文章目录 SV入门练习基本数据类型字符串类型数组类型接口的定义与例化类的封装类的继承package的使用随机约束线程的同步线程的控制虚方法方法(任务与函数)SV用于设计 参考资料 SV入门练习 基本数据类型 有符号无符号、四状态双状态、枚举类型、结构体…...

Java反射常用方法

反射 作用: 对于任意一个对象,把对象所有的字段名和值,保存到文件中去利用反射动态的创造对象和运行方法 1. 获取字节码文件对象 方法描述Class.forName(String)通过类的全限定名字符串获取字节码文件对象。类字面量直接使用类的字面量获…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...

PHP和Node.js哪个更爽?

先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...