当前位置: 首页 > news >正文

数据挖掘|序列模式挖掘及其算法的python实现

数据挖掘|序列模式挖掘及其算法的python实现

  • 1. 序列模式挖掘
  • 2. 基本概念
  • 3. 序列模式挖掘实例
  • 4. 类Apriori算法(GSP算法)
    • 4.1 算法思想
    • 4.2 算法步骤
    • 4.3 基于Python的算法实现

1. 序列模式挖掘

序列(sequence)模式挖掘也称为序列分析。
序列模式发现(Sequential Patterns Discovery)是由R.Agrawal于1995年首先提出的。
序列模式寻找的是事件之间在顺序上的相关性。

  • 例如,“凡是买了喷墨打印机的顾客中,80%的人在三个月之后又买了墨盒”,就是一个序列关联规则。对于保险行业,通过分析顾客不同次的购买行为发现,顾客本次购买重疾险,下次购买分红保险,则企业可以通过对重疾险销量的统计来预测分红险的销售量。

序列模式挖掘在交易数据库分析、Web访问日志分析以及通信网络分析等领域具有广泛的应用前景。

2. 基本概念

I = i 1 , i 2 , . . . , i n I={i_1,i_2,...,i_n} I=i1,i2,...,in是一个项集,序列就是若事件(元素)组成的有序列表。

一个序列 S e Se Se可表示为 < s 1 , s 2 , . . . , s n > <s_1,s_2,...,s_n> <s1,s2,...,sn>,其中 s j ( j = 1 , 2 , … , n ) s_j(j=1,2, …, n) sj(j=1,2,,n)为事件,也称为 S e Se Se的元素。

元素由不同的项组成。当元素只包含一项时,一般省去括号,例如, { i 2 } \{i_2\} {i2}一般表示为 i 2 i_2 i2

元素之间是有顺序的,但元素内的项是无序的,一般定义为词典序。序列包含项的个数称为序列的长度,长度为 L L L的序列记为 L − 序列 L-序列 L序列

序列数据库就是元组 < s i d , S e > <sid, Se> <sid,Se>的集合,即有序事件序列组成的数据库,其中 S e Se Se是序列, s i d sid sid 是该序列的序列号。

存在两个序列 α = < a 1 , a 2 , . . . , a n > , β = < b 1 , b 2 , … , b n > \alpha = <a_1, a_2, ...,a_n>, \beta = <b_1, b_2, …, b_n> α=<a1,a2,...,an>,β=<b1,b2,,bn>,如果存在整数 1 ≤ i 1 < i 2 < … < i n ≤ m 1\leq i_1 < i_2 <…<i_n \leq m 1i1<i2<<inm a 1 ⊆ b i 1 , a 2 ⊆ b i 2 , … , a n ⊆ b i n a_1\subseteq b_{i1}, a_2 \subseteq b_{i2}, …, a_n \subseteq b_{in} a1bi1,a2bi2,,anbin,那么称序列 α \alpha α β \beta β 的子序列(subsequence),或者序列 β \beta β 包含 α \alpha α,记作 α ⊆ β \alpha\subseteq \beta αβ

序列在序列数据库 S e Se Se 中的支持度为序列数据库 S e Se Se 中包含序列 α \alpha α的序列个数除以总的序列数,记为 s u p p o r t ( α ) support (\alpha) support(α)。给定支持度阈值 τ \tau τ,如果序列 α \alpha α在序列数据库中的支持度不低于 τ \tau τ,则称序列 α \alpha α为序列模式(频繁序列)。

3. 序列模式挖掘实例

现有事务数据库如下表1所示,交易中不考虑顾客购买物品的数量,只考虑物品有没有被购买。整理后可得到顾客购物序列库,如表2所示。

  • 表1:顾客购物事务数据库
时间顾客ID购物项集
2023.12.10210,20
2023.12.11590
2023.12.12230
2023.12.13240,60,70
2023.12.14430
2023.12.15330,50,70
2023.12.17130
2023.12.17190
2023.12.18440,70
2023.12.19490
  • 表2:顾客购物序列库
顾客ID顾客购物序列
1<30,90>
2<{10,20},30,{40,60,70}>
3<{30,50,70}>
4<30,{40,70},90>
5<90>

设最小支持度为 25%,从表2中可以看出,<30,90> 是 <30, {40,70},90> 的子序列。两个序列<30,90>、<30,{40,70},90>的支持度都为 40%,因此是序列模式。

4. 类Apriori算法(GSP算法)

序列模式挖掘是在给定序列数据库中找出满足最小支持度阈值的序列模式的过程。

4.1 算法思想

采用分而治之的思想,不断产生序列数据库的多个更小的投影数据库,然后在各个投影数据库上进行序列模式挖掘。

4.2 算法步骤

  1. 扫描序列数据库,得到长度为 1 1 1的序列模式 L 1 L1 L1,作为初始的种子集。
  2. 根据长度为 i i i 的种子集 L i ( i ≥ 1 ) L_i (i\geq1) Li(i1) 通过连接操作生成长度为 i + 1 i+1 i+1的候选序列模式 C i + 1 C_{i+1} Ci+1;然后扫描序列数据库,计算每个候选序列模式的支持数,产生长度为 i + 1 i+1 i+1的序列模式 L i + 1 L_{i+1} Li+1,并将 L i + 1 L_{i+1} Li+1 作为新的种子集。
  3. 重复第二步,直到没有新的序列模式或新的候选序列模式产生为止

4.3 基于Python的算法实现

问题:原始序列为:<1,2,3,4>,<{1,5},2,3,4>, <1,3,4,{3,5}>, <1,3,5>, <4,5>,挖掘其中的序列模式。
以下代码是本人自己实现的。感觉原始序列的数据结构使用的不太好,导致子模式识别较为麻烦,可能存在错误,仅保证本算例正确,敬请谅解。

import numpy as np
#子模式判断 
def isSubSeq(seq,subseq)->bool:i=0;if len(subseq)>len(seq):return Falsefor sel in subseq:if i >= len(seq):return Falsefor j in range(i,len(seq)):if type(seq[j])==list:if sel in seq[j]:i=j+1breakelif j==len(seq)-1:return Falseelif sel==seq[j]:i=j+1breakelif j==len(seq)-1:return Falseelse:continuereturn True          # 获取L1数据集
def getL1(seq):ds=[]for ss in seq:for s in ss:if type(s)==list:for e in s:if [e] not in ds:ds.append([e])else:if [s] not in ds:ds.append([s])return np.array(ds)# 获取L2数据集
def getL2(l1seq)->np.ndarray:ds=[]for i in range(len(l1seq)):for j in range(len(l1seq)):if i != j:#np.append(ds, [l1seq[i],l1seq[j]])ds.append([l1seq[i][0],l1seq[j][0]])    return  np.array(ds)  # 获取L3数据集
def getL3(l1seq,l2seq):ds=[]for se2 in l2seq:for se1 in l1seq:if se1 not in se2:ds.append(np.append(se2, se1))         return  ds  
# 获取L4数据集
def getL4(l1seq,l3seq):ds=[]for se3 in l3seq:for se1 in l1seq:if se1 not in se3:ds.append(np.append(se3, se1))         return  ds        #计算支持度
def calSup(dsq,seq):i=0.0for s in dsq:if isSubSeq(s,seq):i=i+1return i/len(dsq)if __name__ == "__main__":min_support = 0.4  #最小支持度dsq = np.array([[1,2,3,4],[[1,5],2,3,4],[1,3,4,[3,5]],[1,3,5],[4,5]],dtype=object)l1=getL1(dsq)for l in l1:print('序列-1:',l,'的支持度为:',calSup(dsq, l))l2 = getL2(l1)l2seq=[]for i in range(len(l2)):sups=calSup(dsq, l2[i])if sups >=min_support:print('序列-2:',l2[i],'的支持度为:',sups)l2seq.append(l2[i])l3=getL3(l1,l2seq)l3seq=[]for i in range(len(l3)):sups=calSup(dsq, l3[i])if sups >=min_support:print('序列-3:',l3[i],'的支持度为:',sups)l3seq.append(l3[i])l4=getL4(l1,l3seq)l4seq=[]for i in range(len(l4)):sups=calSup(dsq, l4[i])if sups >=min_support:print('序列-4:',l4[i],'的支持度为:',sups)l4seq.append(l4[i])

输出:

	序列-1: [1] 的支持度为: 0.8序列-1: [2] 的支持度为: 0.4序列-1: [3] 的支持度为: 0.8序列-1: [4] 的支持度为: 0.8序列-1: [5] 的支持度为: 0.8序列-2: [1 2] 的支持度为: 0.4序列-2: [1 3] 的支持度为: 0.8序列-2: [1 4] 的支持度为: 0.6序列-2: [1 5] 的支持度为: 0.4序列-2: [2 3] 的支持度为: 0.4序列-2: [2 4] 的支持度为: 0.4序列-2: [3 4] 的支持度为: 0.6序列-2: [3 5] 的支持度为: 0.4序列-2: [4 5] 的支持度为: 0.4序列-3: [1 2 3] 的支持度为: 0.4序列-3: [1 2 4] 的支持度为: 0.4序列-3: [1 3 4] 的支持度为: 0.6序列-3: [1 3 5] 的支持度为: 0.4序列-3: [2 3 4] 的支持度为: 0.4序列-4: [1 2 3 4] 的支持度为: 0.4

相关文章:

数据挖掘|序列模式挖掘及其算法的python实现

数据挖掘|序列模式挖掘及其算法的python实现 1. 序列模式挖掘2. 基本概念3. 序列模式挖掘实例4. 类Apriori算法&#xff08;GSP算法&#xff09;4.1 算法思想4.2 算法步骤4.3 基于Python的算法实现 1. 序列模式挖掘 序列(sequence)模式挖掘也称为序列分析。 序列模式发现&…...

3. Django 初探路由

3. 初探路由 一个完整的路由包含: 路由地址, 视图函数(或者视图类), 可选变量和路由命名. 本章讲述Django的路由编写规则与使用方法, 内容分为: 路由定义规则, 命名空间与路由命名, 路由的使用方式.3.1 路由定义规则 路由称为URL (Uniform Resource Locator, 统一资源定位符)…...

论文笔记:Large Language Models as Analogical Reasoners

iclr 2024 reviewer打分5558 1 intro 基于CoT prompt的大模型能够更好地解决复杂推理问题 然而传统CoT需要提供相关的例子作为指导&#xff0c;这就增加了人工标注的成本——>Zero-shot CoT避免了人工标注来引导推理 但是对于一些复杂的任务难以完成推理&#xff0c;例如c…...

第3章 数据定义语言DDL

文章目录 第3章 DDL语言&#xff1a;数据定义语言3.1 MySQL的数据类型3.2 表的创建&#xff1a;create3.3 表的删除&#xff1a;drop3.4 快速创建表3.5 快速删除表中的数据&#xff1a;truncate3.6 修改表结构&#xff1a;alter 第5章 约束5.1 非空约束&#xff1a;not null5.2…...

C#操作MySQL从入门到精通(7)——对查询数据进行简单过滤

前言 我们在查询数据库中数据的时候,有时候需要剔除一些我们不想要的数据,这时候就需要对数据进行过滤,比如学生信息中,我只需要年龄等于18的,类似这种操作,本文就是详细介绍如何对查询的数据进行初步的过滤。 1、等于操作符 本次查询student_age 等于20的数据,使用我…...

【CVE复现计划】CVE-2024-0195

CVE-2024-0195 简介&#xff1a; SpiderFlow是新一代开源爬虫平台&#xff0c;以图形化方式定义爬虫流程&#xff0c;不写代码即可完成爬虫。基于springbootlayui开发的前后端不分离,也可以进行二次开发。该系统/function/save接口存在RCE漏洞&#xff0c;攻击者可以构造恶意命…...

k8s的ca以及相关证书签发流程

k8s的ca以及相关证书签发流程 1. kube-apiserver相关证书说明2. 生成CA凭证1.1. 生成CA私钥1.2. 生成CA证书 2. 生成kube-apiserver凭证2.1. 生成kube-apiserver私钥2.2. 生成kube-apiserver证书请求2.3. 生成kube-apiserver证书 3. 疑问和思考4. 参考文档 对于网站类的应用&am…...

思迈特软件与上海德拓签署战略合作协议,携手赋能企业数字化转型

3月27日&#xff0c;广州思迈特软件有限公司&#xff08;简称“思迈特软件”&#xff09;与上海德拓信息技术有限公司&#xff08;简称“德拓信息”&#xff09;正式签约建立战略合作伙伴关系。双方将在数字化转型、数据服务、数据应用以及市场资源等多个领域展开深度合作&…...

【快捷部署】015_Minio(latest)

&#x1f4e3;【快捷部署系列】015期信息 编号选型版本操作系统部署形式部署模式复检时间015MiniolatestCentOS 7.XDocker单机2024-04-09 一、快捷部署 #!/bin/bash ################################################################################# # 作者&#xff1a;c…...

<网络安全>《72 微课堂<什么是靶场?>》

1 简介 网络安全靶场是一种模拟真实网络环境的技术或平台。 网络安全靶场基于虚拟化技术&#xff0c;能够模拟网络架构、系统设备、业务流程的运行状态及运行环境&#xff0c;用于支持网络安全相关的学习、研究、检验、竞赛和演习等活动&#xff0c;旨在提高人员及机构的网络…...

Golang | Leetcode Golang题解之第18题四数之和

题目&#xff1a; 题解&#xff1a; func fourSum(nums []int, target int) (quadruplets [][]int) {sort.Ints(nums)n : len(nums)for i : 0; i < n-3 && nums[i]nums[i1]nums[i2]nums[i3] < target; i {if i > 0 && nums[i] nums[i-1] || nums[i]…...

自动驾驶中的传感器融合算法:卡尔曼滤波器和扩展卡尔曼滤波器

自动驾驶中的传感器融合算法&#xff1a;卡尔曼滤波器和扩展卡尔曼滤波器 附赠自动驾驶学习资料和量产经验&#xff1a;链接 介绍&#xff1a; 追踪静止和移动的目标是自动驾驶技术领域最为需要的核心技术之一。来源于多种传感器的信号&#xff0c;包括摄像头&#xff0c;雷达…...

基于ssm的星空游戏购买下载平台的设计与实现论文

摘 要 随着科学技术的飞速发展&#xff0c;各行各业都在努力与现代先进技术接轨&#xff0c;通过科技手段提高自身的优势&#xff0c;商品交易当然也不能排除在外&#xff0c;随着商品交易管理的不断成熟&#xff0c;它彻底改变了过去传统的经营管理方式&#xff0c;不仅使商品…...

DSOX6004A是德科技DSOX6004A示波器

181/2461/8938产品概述&#xff1a; 特点: 是德科技DSOX6004A具有7合1集成功能&#xff0c;结合了数字通道、串行协议分析、内置双通道波形发生器、频率响应分析、内置数字万用表和带累加器的内置10位计数器。1千兆赫至6千兆赫4个模拟通道在12.1英寸电容式多点触摸屏上轻松查…...

golang 使用 cipher、aes 实现 oauth2 验证

在Go语言中&#xff0c;crypto/cipher包提供了加密和解密消息的功能。这个包实现了各种加密算法&#xff0c;如AES、DES、3DES、RC4等&#xff0c;以及相应的模式&#xff0c;如ECB、CBC、CFB、OFB、CTR等。以下是如何使用crypto/cipher包进行加密和解密操作的基本步骤&#xf…...

LLMs之FreeGPT35:FreeGPT35的简介、安装和使用方法、案例应用之详细攻略

LLMs之FreeGPT35&#xff1a;FreeGPT35的简介、安装和使用方法、案例应用之详细攻略 目录 FreeGPT35的简介 FreeGPT35的安装和使用方法 1、部署和启动服务 Node 2、使用 Docker 部署服务&#xff1a; 运行 Docker 容器以部署服务 使用 Docker Compose 进行更方便的容器化…...

【力扣一刷】代码随想录day32(贪心算法part2:122.买卖股票的最佳时机II、55. 跳跃游戏、45.跳跃游戏II )

目录 【122.买卖股票的最佳时机II】中等题 方法一 贪心算法 方法二 动态规划 【55. 跳跃游戏】中等题 【尝试】 递归 &#xff08;超时&#xff09; 方法 贪心算法 【45.跳跃游戏II】中等题 方法 贪心算法 【122.买卖股票的最佳时机II】中等题&#xff08;偏简单&#xff0…...

安卓远离手机app

软件介绍 远离手机是专门为防止年轻人上瘾而打造的生活管理类的软件,适度用手机&#xff0c;保护眼睛&#xff0c;节约时间。 下载 安卓远离手机app...

yolov5旋转目标检测遥感图像检测-无人机旋转目标检测(代码和原理)

YOLOv5&#xff08;You Only Look Once version 5&#xff09;是一个流行且高效的实时目标检测深度学习模型&#xff0c;最初设计用于处理图像中的水平矩形边界框目标。然而&#xff0c;对于旋转目标检测&#xff0c;通常需要对原始YOLOv5架构进行扩展或修改&#xff0c;以便能…...

云手机提供私域流量变现方案

当今数字营销领域&#xff0c;私域流量是一座巨大的金矿&#xff0c;然而并非人人能够轻易挖掘。一家营销公司面临着利用社交、社区、自媒体等应用积累私域流量&#xff0c;并通过销售产品、推送广告等方式实现流量变现的挑战与困境。本文将详细介绍这家公司是如何通过云手机&a…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解

进来是需要留言的&#xff0c;先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码&#xff0c;输入的<>当成字符串处理回显到页面中&#xff0c;看来只是把用户输…...

java高级——高阶函数、如何定义一个函数式接口类似stream流的filter

java高级——高阶函数、stream流 前情提要文章介绍一、函数伊始1.1 合格的函数1.2 有形的函数2. 函数对象2.1 函数对象——行为参数化2.2 函数对象——延迟执行 二、 函数编程语法1. 函数对象表现形式1.1 Lambda表达式1.2 方法引用&#xff08;Math::max&#xff09; 2 函数接口…...

GraphRAG优化新思路-开源的ROGRAG框架

目前的如微软开源的GraphRAG的工作流程都较为复杂&#xff0c;难以孤立地评估各个组件的贡献&#xff0c;传统的检索方法在处理复杂推理任务时可能不够有效&#xff0c;特别是在需要理解实体间关系或多跳知识的情况下。先说结论&#xff0c;看完后感觉这个框架性能上不会比Grap…...