计算机视觉之三维重建(7)---多视图几何(下)
文章目录
- 一、透视结构恢复问题
- 1.1 概述
- 1.2 透视结构恢复歧义
- 1.3 代数方法
- 1.4 捆绑调整
- 二、P3P问题
- 三、随机采样一致性
一、透视结构恢复问题
1.1 概述
1. 透视结构恢复问题:摄像机为透视相机,内外参数均未知。
2. 问题:已知 n n n 个三维点 X j X_j Xj 在 m m m 张图像中的对应点的像素坐标为 x i j x_{ij} xij,且 x i j = M i X j x_{ij}=M_iX_j xij=MiXj,其中 M i M_i Mi 为第 i i i 张图片对应的摄像机投影矩阵,求解 n n n 个三维点 X j X_j Xj 的坐标以及 m m m 个摄像机投影矩阵 M i M_i Mi。
1.2 透视结构恢复歧义
1. 透视结构与仿射结构的区别在于,透视结构计算得到的投影矩阵 M i M_i Mi,与真实投影矩阵差一个 4 ∗ 4 4*4 4∗4 的可逆矩阵 H H H,也就是差了一个透视变换关系。
2. 对于给定 m m m 个相机, n n n 个三维点,我们将有 2 m n 2mn 2mn 个等式, 11 m + 3 n − 15 11m+3n-15 11m+3n−15 个未知量。
1.3 代数方法
1. 求解步骤:(1) 求解基础矩阵 F F F (归一化八点法)。 (2) 基于 F F F 估计摄像机矩阵 F → M 1 , M 2 F \rightarrow M_1,M_2 F→M1,M2。 (3) 三角化。
关键是第二步的求解。
2. (1)令 M 1 ∗ = [ I ∣ 0 ] M_1^*=[I|0] M1∗=[I∣0], M 2 ∗ = [ A ∣ b ] M_2^*=[A|b] M2∗=[A∣b]。推导出基础矩阵 F F F 与 A A A 和 b b b 的关系: F = [ b x ] A F=[b_x]A F=[bx]A。注:同方向的向量叉乘为 0 0 0。
(2)如何计算 A A A 和 b b b:
1.4 捆绑调整
1. 捆绑调整(Bundle Adjustment):捆绑调整使用最小化重投影误差,可以进行多次迭代,使重构点足够拟合真实值,可以应用于欧式结构、仿射结构和透视结构多种情况,是一个恢复结构和运动的非线性方法。
2. 代数法与分解法的局限性:(1) 因式分解法:假定所有点都是可见的,所以对于存在遮挡,建立对应点关系失败的情况将不得不删除该对应点关系。 (2) 代数法:应用于 2 2 2 视图重建,多视图容易出现误差累积。
3. 最小化重投影误差: m i n ( E ( M , X ) ) = ∑ i = 1 m ∑ j = 1 n D ( x i j , M i X j ) 2 min(E(M,X))=\sum_{i=1}^m \sum_{j=1}^nD(x_{ij},M_iX_j)^2 min(E(M,X))=∑i=1m∑j=1nD(xij,MiXj)2
4. 捆绑调整的优势:同时处理大量视图,处理丢失的数据。局限性:大量参数的最小化问题,需要良好的初始条件(即初始 M i M_i Mi)。一般来说,捆绑调整作为运动恢复问题的最后一步,首先通过分解或代数方法先求出优化问题的初始 M i M_i Mi。
二、P3P问题
1. (1) PnP 问题:指通过世界中 N N N 个三维点坐标及其在图像中 N N N 个像点坐标,计算出相机或物体位姿的问题。 (2) P3P 问题:我们只讨论世界中 3 3 3 个三维点和图像中 3 3 3 个像点的关系,计算欧式结构恢复相机位姿的问题,也就是计算出摄像机的外参数 R R R、 T T T。 (3) 相比于之前求 F F F 和三角化得到摄像机外参数的方法,该方法误差更小。
2. P3P 问题解法如下所示。其中步骤 1 1 1 的计算方法:由于 a = K [ I 0 ] P a a=K[I \hspace{0.2cm} 0]P_a a=K[I0]Pa,则 K − 1 a = [ I 0 ] P a K^{-1}a=[I \hspace{0.2cm} 0]P_a K−1a=[I0]Pa,所极点到像点 a a a 的方向向量为: o a → = K − 1 a ∣ ∣ K − 1 a ∣ ∣ \overrightarrow{oa}=\frac{K^{-1}a}{||K^{-1}a||} oa=∣∣K−1a∣∣K−1a,同理可以计算出 o b → \overrightarrow{ob} ob 和 o c → \overrightarrow{oc} oc。
三、随机采样一致性
1. 随机采样(Random sample consensus):一种适用于数据受到异常值污染的模型拟合方法,通过选择随机均匀采样一定的点,估计模型参数,并输出模型分数最高的模型。
2. 算法流程:
(1) 随机均匀采样获取模型求解所需的最小子集。
(2) 适用该子集估计模型参数。
(3) 计算剩余样本与当前模型的一致性,统计满足当前模型的内点(在正确拟合模型上的点为内点,负样本点为外点)个数,作为当前模型分数。
(4) 按照设定次数重复(1)-(3)步,最终输出分数最高的模型。
相关文章:

计算机视觉之三维重建(7)---多视图几何(下)
文章目录 一、透视结构恢复问题1.1 概述1.2 透视结构恢复歧义1.3 代数方法1.4 捆绑调整 二、P3P问题三、随机采样一致性 一、透视结构恢复问题 1.1 概述 1. 透视结构恢复问题:摄像机为透视相机,内外参数均未知。 2. 问题:已知 n n n 个三维…...

AUTOSAR配置工具开发教程 - 开篇
简介 本系列的教程,主要讲述如何自己开发一套简单的AUTOSAR ECU配置工具。适用于有C# WPF基础的人员。 简易介绍见:如何打造AUTOSAR工具_autosar_mod_ecuconfigurationparameters-CSDN博客 实现版本 AUTOSAR 4.0.3AUTOSAR 4.2.2AUTOSAR 4.4.0 效果 …...

配置VM开机自启动
1. 在此电脑-右键选择“管理”-服务和应用程序-服务中找到VMware Workstation Server服务(新版名称也可能是VMware自启动服务,自己找一下,服务属性里有描述信息的),将其启用并选择开机自动启动 新版参考官方文档&…...

工作的第四天
推荐一个软件分配软件 我们看一下如何使用 连接信息 AOC中国官方网站 发现打开 还是这个页面信息,发现最后出现了页面重新定向的问题 我服了 我的码 怎么解决 我想用这个软件 来看看这个软件下载就可以使用 一听到钱我使用的情绪不是很高了 算了不使用 使用…...
前端开发语言概览:从HTML、CSS到JavaScript
随着互联网的发展,前端开发领域涌现出了许多不同的编程语言和技术,用于构建各种类型的网页和应用程序。本文将介绍几种主流的前端开发语言,包括 HTML、CSS 和 JavaScript,并简要讨论它们在前端开发中的作用和特点。 1. HTML&…...

《Java面试自救指南》(专题二)计算机网络
文章目录 力推的计网神课get请求和post请求的区别在浏览器网址输入一个url后直到浏览器显示页面的过程常用状态码session 和 cookie的区别TCP的三次握手和四次挥手七层OSI模型(TCP/IP协议模型)各种io模型的知识http协议和tcp协议的区别https和http的区别…...
Android14音频进阶之<进阶调试>:Perfetto定位系统音频问题(六十六)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒体系统工程师系列【原创干货持续更新中……】🚀 优质视频课程:AAOS车载系统+AOSP…...

使用 Clickhouse 集成的表引擎同步数据方式详解
Clickhouse作为一个列式存储分析型数据库,提供了很多集成其他组件的表引擎数据同步方案。 官网介绍 一 Kafka 表引擎 使用Clickhouse集成的Kafka表引擎消费Kafka写入Clickhouse表中。 1.1 流程图 1.2 建表 根据上面的流程图需要建立三张表,分别Click…...

Linux 性能分析工具大全
vmstat--虚拟内存统计 vmstat(VirtualMeomoryStatistics,虚拟内存统计)是 Linux 中监控内存的常用工具,可对操作系统的虚拟内存、进程、CPU 等的整体情况进行监视。vmstat 的常规用法:vmstat interval times 即每隔 interval 秒采…...

FME学习之旅---day21
我们付出一些成本,时间的或者其他,最终总能收获一些什么。 教程:AutoCAD 变换 相关的文章 为您的 DWG 赋予一些样式:使用 DWGStyler、模板文件、块等 FME数据检查器在显示行的方式上受到限制。它只能显示线条颜色,而…...

volta(轻松切换管理Node.js版本)
Node.js版本管理 Volta提供了一个简单直观的命令行界面,可以轻松地安装、卸载、更新和切换Node.js版本。 Volta 既可以全局使用,也可以在项目级别使用,可以为每个项目单独设置node版本,nvm不行。 下载安装Volta 参考: …...

机器学习知识点
1鸢尾花分类 鸢尾花分类问题是一个经典的机器学习问题,旨在根据鸢尾花的花萼长度、花萼宽度、花瓣长度和花瓣宽度等特征,将鸢尾花分成三个品种:山鸢尾(setosa)、变色鸢尾(versicolor)和维吉尼亚…...

SQL注入利用学习-Union联合注入
联合注入的原理 在SQL语句中查询数据时,使用select 相关语句与where 条件子句筛选符合条件的记录。 select * from person where id 1; #在person表中,筛选出id1的记录如果该id1 中的1 是用户可以控制输入的部分时,就有可能存在SQL注入漏洞…...

zookeeper源码(12)命令行客户端
zkCli.sh脚本 这个命令行脚本在bin目录下: ZOOBIN"${BASH_SOURCE-$0}" ZOOBIN"$(dirname "${ZOOBIN}")" ZOOBINDIR"$(cd "${ZOOBIN}"; pwd)"# 加载zkEnv.sh脚本 if [ -e "$ZOOBIN/../libexec/zkEnv.sh&qu…...

深度学习的数学基础--Homework2
学习资料:https://www.bilibili.com/video/BV1mg4y187qv/?spm_id_from333.788.recommend_more_video.1&vd_sourced6b1de7f052664abab680fc242ef9bc1 神经网络的特点:它不是一个解析模型,它的储存在一堆参数里面(确定一个超平…...

什么是HW,企业如何进行HW保障?
文章目录 一、什么是HW二、HW行动具体采取了哪些攻防演练措施三、攻击方一般的攻击流程和方法四、企业HW保障方案1.建意识2.摸家底3.固城池4.配神器5.增值守 一、什么是HW 网络安全形势近年出现新变化,网络安全态势变得越来越复杂,黑客攻击入侵、勒索病…...

【Redis系列】Spring Boot 集成 Redis 实现缓存功能
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

Flutter之Flex组件布局
目录 Flex属性值 轴向:direction:Axis.horizontal 主轴方向:mainAxisAlignment:MainAxisAlignment.center 交叉轴方向:crossAxisAlignment:CrossAxisAlignment 主轴尺寸:mainAxisSize 文字方向:textDirection:TextDirection 竖直方向排序:verticalDirection:VerticalDir…...

【Linux】TCP编程{socket/listen/accept/telnet/connect/send}
文章目录 1.TCP接口1.1socket文档 1.2listen拓:端口号8080 1.3accept拓:今天全局函数 1.4读写接口1.5telnet1.一个客户端2.两个客户端 1.6ulimit -a1.7常识回顾1.8connect1.9拓:客户端的ip和地址什么时候被分配?1.10拓:…...
【WPF应用33】WPF基本控件-TabControl的详解与示例
在Windows Presentation Foundation(WPF)中,TabControl控件是一个强大的界面元素,它允许用户在多个标签页之间切换,每个标签页都可以显示不同的内容。这种控件在组织信息、提供选项卡式界面等方面非常有用。在本篇博客…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...

听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...

mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...