当前位置: 首页 > news >正文

Scikit-Learn K均值聚类

Scikit-Learn K均值聚类

    • 1、K均值聚类
      • 1.1、K均值聚类及原理
      • 1.2、K均值聚类的优缺点
      • 1.3、聚类与分类的区别
    • 2、Scikit-Learn K均值聚类
      • 2.1、Scikit-Learn K均值聚类API
      • 2.2、K均值聚类初体验(寻找最佳K)
      • 2.3、K均值聚类案例



1、K均值聚类


K-均值(K-Means)是一种聚类算法,属于无监督学习。K-Means在机器学习知识结构中的位置如下:

在这里插入图片描述

1.1、K均值聚类及原理


聚类(Clustering)是指将一个数据对象集合划分成簇(子集),使得簇内对象彼此相似,簇间对象不相似。通俗来说,就是将数据划分到不同组中

根据算法原理,常用的聚类算法可分为:基于划分的聚类算法K-Means、基于层次的聚类算法HC、基于密度的聚类算法。本文主要介绍K-Means聚类

K-Means算法起源于1967年,由James MacQueen和J.B.Hartigan提出。K-Means中的K指的是类的数量,Means指均值

K-Means算法的基本原理是:根据样本特征的相似度或距离远近,将样本(N个点)划分成若干个类(K个集群),使得每个点都属于离其最近的中心点(均值)对应的类(集群)

其中,相似度通常使用欧几里得距离来度量,用于计算数据点与质心之间的距离(使用平方):
d ( X i , C j ) = ∣ ∣ X i − C j ∣ ∣ 2 d(X_i,C_j)=||X_i-C_j||^2 d(Xi,Cj)=∣∣XiCj2

其中, X i X_i Xi是数据点, C j C_j Cj是质心

K-Means假设一个样本属于一个类,K-Means的类别是样本的中心(均值);K-Means的损失函数是样本与其所属类的中心之间的距离平方和(SSE):
J = ∑ j = 1 K ∑ i = 1 N j ∣ ∣ X i − C j ∣ ∣ 2 J=\sum_{j=1}^{K}\sum_{i=1}^{N_j}||X_i-C_j||^2 J=

相关文章:

Scikit-Learn K均值聚类

Scikit-Learn K均值聚类 1、K均值聚类1.1、K均值聚类及原理1.2、K均值聚类的优缺点1.3、聚类与分类的区别2、Scikit-Learn K均值聚类2.1、Scikit-Learn K均值聚类API2.2、K均值聚类初体验(寻找最佳K)2.3、K均值聚类案例1、K均值聚类 K-均值(K-Means)是一种聚类算法,属于无…...

蓝桥杯 - 受伤的皇后

解题思路: 递归 回溯(n皇后问题的变种) 在 N 皇后问题的解决方案中,我们是从棋盘的顶部向底部逐行放置皇后的,这意味着在任何给定时间,所有未来的行(即当前行之下的所有行)都还没…...

AcWing---乌龟棋---线性dp

312. 乌龟棋 - AcWing题库 思路: 原来没有碰到过类似的题: dp数组为思维:dp[i][j][k][r],分别表示用了i个第一类型卡片,j个第二类型卡片...所到的格子数的最大分数,为啥不用记录乌龟到了哪里呢&#xff1…...

python代码使用过程中使用快捷键注释时报错

1.代码 2.代码报错 3.代码注释后的结果 4. 原因...

go之web框架gin

介绍 Gin 是一个用 Go (Golang) 编写的 Web 框架。 它具有类似 martini 的 API,性能要好得多,多亏了 httprouter,速度提高了 40 倍。 如果您需要性能和良好的生产力,您一定会喜欢 Gin。 安装 go get -u github.com/gin-gonic/g…...

SpringBoot 定时任务实践、定时任务按指定时间执行

Q1. springboot怎样创建定时任务? 很显然,人人都知道,Scheduled(cron ".....") Q2. 如上所示创建了定时任务却未能执行是为什么? 如果你的cron确定没写错的话 cron表达式是否合法,可参考此处&#xff0c…...

MYSQL数据库故障排除与优化

目录 MySQL 单实例故障排查 MySQL 主从故障排查 MySQL 优化 MySQL 单实例故障排查 故障现象 1 ERROR 2002 (HY000): Cant connect to local MySQL server through socket /data/mysql/mysql.sock (2) 问题分析:以上这种情况一般都…...

算法-数论-蓝桥杯

算法-数论 1、最大公约数 def gcd(a,b):if b 0:return areturn gcd(b, a%b) # a和b的最大公约数等于b与a mod b 的最大公约数def gcd(a,b):while b ! 0:cur aa bb cur%bpassreturn a欧几里得算法 a可以表示成a kb r(a,b,k&#xff0c…...

222.完全二叉树节点个数

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。 完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最…...

C++中的string类操作详解

引言 针对C中的string,本文主要讲解如何对其进行插入、删除、查找、比较、截断、分割以及与数字之间的相互转换等。 字符串插入 1. append方法 std::string str "hello"; str.append(7, w); // 在末尾添加7个字符w str.append("wwwwwww");…...

Java绘图坐标体系

一、介绍 下图说明了Java坐标系。坐标原点位于左上角,以像素为单位。在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐…...

【MATLAB源码-第38期】基于OFDM的块状导频和梳状导频误码率性能对比,以及LS/LMMSE两种信道估计方法以及不同调制方式对比。

操作环境: MATLAB 2022a 1、算法描述 块状导频和梳状导频都是用于无线通信系统中信道估计的方法。 块状导频: 定义: 在频域上,块状导频是连续放置的一组导频符号。这意味着所有的导频符号都集中在一个短的时间段内发送。 优点…...

javaWeb车辆管理系统设计与实现

摘 要 随着经济的日益增长,车辆作为最重要的交通工具,在企事业单位中得以普及,单位的车辆数目已经远远不止简单的几辆,与此同时就产生了车辆资源的合理分配使用问题。 企业车辆管理系统运用现代化的计算机管理手段,不但可以对车辆的使用进行合理的管理,…...

【DM8】间隔分区

是范围分区的一个扩展 如果使用了间隔函数做分区,在数据插入的时候,如果没有合适的分区,数据库会自动创建一个新的分区。 –year往后推两年 SELECT SYSDATE numtoyminterval(2,‘YEAR’); –month往后推两年 SELECT SYSDATE numtoyminterv…...

0基础如何进入IT行业?

目录 0基础如何进入IT行业? 一、学习路径 二、技能培养 三、实践经验 0基础如何进入IT行业? 对于没有任何相关背景知识的人来说,成功进入IT行业可能看起来是一个遥不可及的目标。然而,只要有正确的方法和坚持不懈的努力&#…...

C#将Console写至文件,且文件固定最大长度

参考文章 将C#的Console.Write同步到控制台和log文件输出 业务需求 在生产环境中,控制台窗口不便展示出来。 为了在生产环境中,完整记录控制台应用的输出,选择将其输出到文件中。 但是,一次性存储所有输出的话,文件会…...

《CSS 知识点》仅在文本有省略号时添加 tip 信息

html <div ref"btns" class"btns"><div class"btn" >这是一段很短的文本.</div><div class"btn" >这是一段很短的文本.</div><div class"btn" >这是一段很长的文本.有省略号和tip.<…...

彩虹聚合DNS管理系统v1.0全新发布

聚合DNS管理系统&#xff08;https://github.com/netcccyun/dnsmgr&#xff09;可以实现在一个网站内管理多个平台的域名解析&#xff0c;目前已支持的域名平台有&#xff1a;阿里云、腾讯云、华为云、西部数码、CloudFlare。本系统支持多用户&#xff0c;每个用户可分配不同的…...

3.10 Python数据类型转换

Python类型转换&#xff0c;Python数据类型转换函数大全 虽然 Python 是弱类型编程语言&#xff0c;不需要像Java或 C 语言那样还要在使用变量前声明变量的类型&#xff0c;但在一些特定场景中&#xff0c;仍然需要用到类型转换。 比如说&#xff0c;我们想通过使用 print() …...

Kotlin基础学习

Kotlin基础学习主要涵盖安装Kotlin编译器、了解基础语法、学习变量声明、类型推断、函数定义以及控制结构等方面。以下是一个简要的Kotlin基础学习指南&#xff1a; 一、安装Kotlin 首先&#xff0c;你需要从JetBrains的官方网站下载并安装Kotlin编译器。同时&#xff0c;你也…...

配置交换机 SSH 管理和端口安全——实验1:配置交换机基本安全和 SSH管理

实验目的 通过本实验可以掌握&#xff1a; 交换机基本安全配置。SSH 的工作原理和 SSH服务端和客户端的配置。 实验拓扑 交换机基本安全和 SSH管理实验拓扑如图所示。 交换机基本安全和 SSH管理实验拓扑 实验步骤 &#xff08;1&#xff09;配置交换机S1 Switch>enab…...

海山数据库(He3DB)原理剖析:浅析Doris跨源分析能力

Doris湖仓分析背景&#xff1a; Doris多数据源功能演进 Doris的生态近年来围绕湖仓分析做了较多工作&#xff0c;Doris一直在积极拓宽大数据生态的OLAP分析市场&#xff0c;Doris2.0之后为了满足湖仓分析场景&#xff0c;围绕multi-catalog、数据缓存、容错、pipeline资源管理…...

第十三届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组 题解

VP比赛链接 : 数据加载中... - 蓝桥云课 1 . 九进制 转 十进制 直接模拟就好了 #include <iostream> using namespace std; int main() {// 请在此输入您的代码int x 22*92*81*9;cout << x << endl ;return 0; } 2 . 顺子日期 枚举出每个情况即可 : …...

20240324-1-集成学习面试题EnsembleLearning

集成学习面试题 1. 什么是集成学习算法&#xff1f; 集成学习算法是一种优化手段或者策略&#xff0c;将多个较弱的模型集成模型组&#xff0c;一般的弱分类器可以是决策树&#xff0c;SVM&#xff0c;KNN等构成。其中的模型可以单独进行训练&#xff0c;并且它们的预测能以某…...

默克尔(Merkle)树 - 原理及用途

默克尔&#xff08;Merkle&#xff09;树的原理以及用途 引言 在当今数字化时代&#xff0c;确保数据的完整性是至关重要的。默克尔树作为一种高效的数据结构&#xff0c;被广泛应用于网络安全、分布式系统以及加密货币等领域&#xff0c;用于验证大量数据的完整性和一致性 数…...

设计模式:迭代器模式

迭代器模式的示例可以涵盖各种数据结构的遍历&#xff0c;包括数组、列表、树、图等。下面是一些不同场景下迭代器模式的示例及其代码实现。 示例 1: 数组遍历 使用迭代器模式遍历数组。 // 迭代器接口 interface Iterator<T> {boolean hasNext();T next(); }// 数组迭…...

Navicat Premium 16常用快捷键

打开一个新的查询窗口&#xff1a; Ctrl Q 关闭当前窗口&#xff1a; Ctrl W 运行当前窗口的SQL语句&#xff1a; Ctrl R 运行选中的SQL语句&#xff1a; Ctrl Shift R 注释选中的SQL语句&#xff1a; Ctrl / 取消注释SQL&#xff1a; Ctrl Shift / 保存连接&…...

LeetCode笔记——1042.不邻接植花

题目 有 n 个花园&#xff0c;按从 1 到 n 标记。另有数组 paths &#xff0c;其中 paths[i] [xi, yi] 描述了花园 xi 到花园 yi 的双向路径。在每个花园中&#xff0c;你打算种下四种花之一。 另外&#xff0c;所有花园 最多 有 3 条路径可以进入或离开. 你需要为每个花园…...

Centos7搭建 Skywalking 单机版

介绍 Skywalking是应用性能监控平台&#xff0c;可用于分布式系统&#xff0c;支持微服务、云原生、Docker、Kubernetes 等多种架构场景。 整体架构如图 Agent &#xff1a;在应用中&#xff0c;收集 Trace、Log、Metrics 等监控数据&#xff0c;使用 RPC、RESTful API、Kafk…...

定制您的设备体验:如何更改Android启动动画

“bootanim"通常是指在操作系统启动过程中显示的动画&#xff0c;尤其是在移动设备或某些定制的Linux发行版中较为常见。这个术语并不是一个标准的命令或工具名称&#xff0c;而是通常用来描述"启动动画”(boot animation)的简称。在Android设备中&#xff0c;启动动…...