当前位置: 首页 > news >正文

交叉验证(Cross-Validation)

交叉验证的基本概念

交叉验证通常用于评估机器学习模型在未知数据上的性能。它将数据集分成k个不同的子集,然后进行k次训练和验证。在每次迭代中,选择一个子集作为测试集,其余的子集作为训练集。这样,每个子集都用作过测试集,因此可以得到k个不同的模型性能评估结果。

K折交叉验证

K折交叉验证是一种最常用的交叉验证方法。它将数据集分成k个相同的子集,然后依次选择一个子集作为测试集,其余的子集作为训练集。这个过程重复k次,每次选择不同的子集作为测试集。最后,我们可以得到k个不同的准确率或其他评估指标,并可以计算它们的平均值来评估模型的性能。

Python代码示例

下面是一个使用scikit-learn库进行K折交叉验证的Python代码示例:

from sklearn.model_selection import KFold, cross_val_score  
from sklearn.datasets import load_iris  
from sklearn.linear_model import LogisticRegression  # 加载数据集  
iris = load_iris()  
X = iris.data  
y = iris.target  # 创建KFold对象,设置k=5  
kf = KFold(n_splits=5, shuffle=True, random_state=42)  # 创建逻辑回归模型  
model = LogisticRegression()  # 使用K折交叉验证评估模型性能  
scores = cross_val_score(model, X, y, cv=kf)  # 输出每次迭代的评估结果和平均值  
print("Scores: ", scores)  
print("Mean score: ", scores.mean())

相关文章:

交叉验证(Cross-Validation)

交叉验证的基本概念 交叉验证通常用于评估机器学习模型在未知数据上的性能。它将数据集分成k个不同的子集,然后进行k次训练和验证。在每次迭代中,选择一个子集作为测试集,其余的子集作为训练集。这样,每个子集都用作过测试集&…...

【kears】(01)keras使用介绍

文章目录 一.特点二.keras如何支持TensorFlow、CNTK 和 Theano2.1 使用 TensorFlow 后端引擎训练和评估模型2.2 使用 TensorFlow 后端引擎训练和评估模型2.3 使用 Theano后端引擎训练和评估模型2.4 不同深度学习框架如何选择1.1 keras.datasets:包含多种常用数据集1…...

2. TypeScript 安装与环境配置指南

TypeScript 是 JavaScript 的一个超集,它为 JavaScript 增加了类型系统和对 ES6 的支持。TypeScript 不仅能够帮助开发者捕获代码中的错误,还能提供更好的编辑器支持,包括代码补全、接口提示等。本文将详细介绍如何在您的开发环境中安装和配置…...

python pygame库的略学

文章目录 概述1. pygame的初始化和退出2. 创建游戏窗口(1)set_mode()(2)set_capyion()(3)update() 3. 游戏循坏与游戏时钟4. 图形和文本绘制(1)图形绘制(2)文…...

大模型日报2024-04-09

大模型日报 2024-04-09 大模型资讯 苹果预告超越ChatGPT的新AI模型ReaLM 摘要: 苹果公司最新宣布,即将推出一款名为ReaLM的人工智能模型。这款AI技术在理解复杂屏幕用户指令方面表现出高超的能力,并能与用户进行自然流畅的对话。ReaLM的推出预示着苹果在…...

抖音视频如何下载保存(方法分享)

有时刷抖音视频,看的喜欢的视频想要下载到本地,但是有很多视频无法下载或者下载下来是有水印的,那怎么办呢?   抖音视频下载有两种情况: 一种是可以直接点击分享下载,然后可以直接点击保存到相册。 视频就自动下载…...

MySQL-用户与权限管理:用户管理、权限管理、角色管理

用户与权限管理 用户与权限管理1.用户管理1.1 登录MySQL服务器1.2 创建用户1.3 修改用户1.4 删除用户1.5 设置当前用户密码1.6 修改其它用户密码 2. 权限管理2.1 权限列表2.2 授予权限的原则2.3 授予权限2.4 查看权限2.5 收回权限 访问控制连接核实阶段请求核实阶段 3. 角色管理…...

Vue.js中如何使用Vue Router处理浏览器返回键的功能

在Vue.js中,Vue Router默认提供了处理浏览器返回键的功能。当用户点击浏览器的返回键时,Vue Router会自动导航到历史记录中的上一个路由。然而,如果你想自定义返回键的行为或者在特定的页面上进行特殊处理,你可以使用Vue Router的…...

QT drawPixmap和drawImage处理图片模糊问题

drawPixmap和drawImage显示图片时,如果图片存在缩放时,会出现模糊现象,例如将一个100x100 的图片显示到30x30的区域,这个时候就会出现模糊。如下: 实际图片: 这个问题就是大图显示成小图造成的像素失真。 当…...

YOLOv9改进策略 :小目标 | 新颖的多尺度前馈网络(MSFN) | 2024年4月最新成果

💡💡💡本文独家改进:多尺度前馈网络(MSFN),通过提取不同尺度的特征来增强特征提取能力,2024年最新的改进思路 💡💡💡创新点:多尺度前馈网络创新十足,抢先使用 💡💡💡如何跟YOLOv8结合:1)放在backbone后增强对全局和局部特征的提取能力;2)放在detect…...

从零开始:一步步学习爬虫技术的实用指南(一)

从零开始:一步步学习爬虫技术的实用指南(一) Urllib1.什么是互联网爬虫2.爬虫核心3.爬虫的用途4.爬虫的分类4.1 通用爬虫:4.1 聚焦爬虫: 5.反爬手段5.1 User‐Agent:5.2.代理IP5.3.验证码访问5.4.动态加载网…...

Python面向对象详解

文章目录 类和继承变量保护类装饰器 类和继承 Python虽然以函数式著称,但在Python中,万物皆对象,其对面向对象编程是有着非常不错的支持的。类是面向对象的核心数据类型,下面代码就创建了一个Person类。 class Person:count 0d…...

思维题锻炼-最小数字

思维题锻炼-最小数字 目录题目描述输入样例输出样例代码 目录 题目描述 给一串数字&#xff0c;求出最小的整数&#xff0c;不能是原数字串中的数字&#xff0c;也不能由数字串中的数字相加得到 输入样例 5 2 1输出样例 4代码 #include<bits/stdc.h> #include<s…...

ubuntu20.04 运行 lio-sam 流程记录

ubuntu20.04 运行 lio-sam 一、安装和编译1.1、安装 ROS11.2、安装 gtsam1.3、安装依赖1.4、下载源码1.5、修改文件1.6、编译和运行 二、官方数据集的运行2.1、casual_walk_2.bag2.2、outdoor.bag、west.bag2.3、park.bag 三、一些比较好的参考链接 记录流程&#xff0c;方便自…...

P5356 [Ynoi2017] 由乃打扑克

我手把手教她打扑克 qwq 综合分析一下2个操作&#xff0c;查找区间第k小的值&#xff0c;感觉可以用主席树&#xff0c;区间修改那没事了 考虑分块做法,块长B 分析第一个操作 只需要维护数列的单调性&#xff0c;然后二分答案上二分就ok了 分析第二个操作 维护一个加法懒…...

随机潮流应对不确定性?计及分布式发电的配电系统随机潮流计算程序代码!

前言 随着分布式电源在电力系统中所占比例的不断扩大,研究分布式发电对系统稳态运行的影响势在必行。带分布式发电的潮流计算常常用来评估其并网后对系统的影响&#xff0c;同时它也是分析分布式发电对电网稳定性的影响等其他理论研究工作的基础。然而&#xff0c;许多分布式发…...

Oracle表空间满清理方案汇总分享

目录 前言思考 一、第一种增加表空间的数据文件数量达到总容量的提升 二、第二种解决方案针对system和sysaux的操作 2.1SYSTEM表空间优化 2.2sysaux表空间回收 2.2.1针对sysaux的表空间爆满还有第二套方案维护 三、第三种解决方案使用alter tablespace resize更改表空间的…...

基于单片机数码管20V电压表仿真设计

**单片机设计介绍&#xff0c;基于单片机数码管20V电压表仿真设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机数码管20V电压表仿真设计的主要目的是通过单片机和数码管显示电路实现一个能够测量0到20V直流电压的电…...

SCI一区 | Matlab实现NGO-TCN-BiGRU-Attention北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现NGO-TCN-BiGRU-Attention北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测 目录 SCI一区 | Matlab实现NGO-TCN-BiGRU-Attention北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测预测效果基本介绍模型…...

C++——优先级队列

前言&#xff1a;这篇文章我们继续来分享一个c的容器——优先级队列。 一.理解优先级 何为优先级一说&#xff1f;实际上就是有顺序的意思。 优先级队列&#xff0c;即有顺序的队列&#xff0c;是一个无需我们自己进行排序操作&#xff0c;在数据传入时就会由容器自己排好序的…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

Oracle11g安装包

Oracle 11g安装包 适用于windows系统&#xff0c;64位 下载路径 oracle 11g 安装包...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇&#xff1a;Liunx环境下搭建PaddlePaddle 3.0基础环境&#xff08;Liunx Centos8.5安装Python3.10pip3.10&#xff09; 一&#xff1a;前言二&#xff1a;安装编译依赖二&#xff1a;安装Python3.10三&#xff1a;安装PIP3.10四&#xff1a;安装Paddlepaddle基础框架4.1…...