【数仓】DataX 通过SpringBoot项目自动生成 job.json 文件
相关文章
- 【数仓】基本概念、知识普及、核心技术
- 【数仓】数据分层概念以及相关逻辑
- 【数仓】Hadoop软件安装及使用(集群配置)
- 【数仓】Hadoop集群配置常用参数说明
- 【数仓】zookeeper软件安装及集群配置
- 【数仓】kafka软件安装及集群配置
- 【数仓】flume软件安装及配置
- 【数仓】flume常见配置总结,以及示例
- 【数仓】Maxwell软件安装及配置,采集mysql数据
- 【数仓】通过Flume+kafka采集日志数据存储到Hadoop
- 【数仓】DataX软件安装及配置,从mysql同步到hdfs
DataX的任务脚本job.json格式基本类似,而且我们在实际同步过程中通常都是一个表对应一个job,那么如果需要同步的表非常多的话,需要编写的job.json文件也非常多。既然是类似文件结构,那么我们就有办法通过程序自动生成相关的job.json文件。
居于以上考虑,有了下面的SpringBoot项目自动生成job.json的程序!
一、job 配置说明
DataX的job配置中的reader、writer和setting是构成数据同步任务的关键组件。
1、reader
reader是数据同步任务中的数据源读取配置部分,用于指定从哪个数据源读取数据以及如何读取数据。它通常包含以下关键信息:
name: 读取插件的名称,如mysqlreader、hdfsreader等,用于指定从哪种类型的数据源读取数据。parameter: 具体的读取参数配置,包括数据源连接信息、读取的表或文件路径、字段信息等。
示例:
假设要从MySQL数据库读取数据,reader的配置可能如下:
"reader": {"name": "mysqlreader","parameter": {"username": "root","password": "password","column": ["id", "name", "age"],"connection": [{"jdbcUrl": "jdbc:mysql://localhost:3306/test_db","table": ["test_table"]}]}
}
2、writer
writer是数据同步任务中的目标数据源写入配置部分,用于指定将数据写入哪个目标数据源以及如何写入数据。它通常包含以下关键信息:
name: 写入插件的名称,如mysqlwriter、hdfswriter等,用于指定将数据写入哪种类型的数据源。parameter: 具体的写入参数配置,包括目标数据源连接信息、写入的表或文件路径、字段映射等。
示例:
假设要将数据写入HDFS,writer的配置可能如下:
"writer": {"name": "hdfswriter","parameter": {"writeMode": "append","fieldDelimiter": ",","compress": "gzip","column": [{"name": "id", "type": "int"}, {"name": "name", "type": "string"}, {"name": "age", "type": "int"}],"connection": [{"hdfsUrl": "hdfs://localhost:9000","file": ["/user/hive/warehouse/test_table"]}]}
}
3、setting
setting是数据同步任务的全局设置部分,用于配置影响整个任务行为的参数。它通常包含以下关键信息:
speed: 控制数据同步的速度和并发度,包括通道数(channel)和每个通道的数据传输速度(如byte)。errorLimit: 设置数据同步过程中的错误容忍度,包括允许出错的记录数(record)和错误率(percentage)。
示例:
一个典型的setting配置可能如下:
"setting": {"speed": {"channel": 3, // 并发通道数"byte": 1048576 // 每个通道的数据传输速度,单位是字节(1MB)},"errorLimit": {"record": 0, // 允许出错的记录数"percentage": 0.02 // 允许出错的记录数占总记录数的百分比}
}
综上所述,reader、writer和setting三个部分共同构成了DataX数据同步任务的配置文件。通过合理配置这些部分,用户可以灵活地定义数据源、目标数据源以及数据同步的行为和性能。在实际应用中,用户应根据具体的数据源类型、目标数据源类型和数据同步需求来填写和调整这些配置。
二、示例,从mysql同步到hdfs
该配置文件定义了从一个 MySQL 数据库读取数据,并将这些数据写入到 HDFS 的过程。
{"job": {"content": [{"reader": {"name": "mysqlreader", "parameter": {"column": ["id","name","msg","create_time","status","last_login_time"], "connection": [{"jdbcUrl": ["jdbc:mysql://192.168.56.1:3306/user?characterEncoding=UTF-8&useUnicode=true&useSSL=false&tinyInt1isBit=false&allowPublicKeyRetrieval=true&serverTimezone=Asia/Shanghai"], "table": ["t_user"]}], "password": "password", "username": "test", "where": "id>3"}}, "writer": {"name": "hdfswriter", "parameter": {"column": [{"name":"id","type":"bigint"},{"name":"name","type":"string"},{"name":"msg","type":"string"},{"name":"create_time","type":"date"},{"name":"status","type":"string"},{"name":"last_login_time","type":"date"}], "compress": "gzip", "defaultFS": "hdfs://hadoop131:9000", "fieldDelimiter": "\t", "fileName": "mysql2hdfs01", "fileType": "text", "path": "/mysql2hdfs", "writeMode": "append"}}}], "setting": {"speed": {"channel": "1"}}}
}
- 参考 mysqlreader
- 参考 hdfswriter
三、通过SpringBoot项目自动生成job文件
本例使用SpringBoot 3.0 结合 JDBC 读取mysql数据库表结构信息,生成job.json文件
1、创建SpringBoot项目,添加pom依赖以及配置
1)增加pom.xml依赖jar包
<!-- Spring Boot JDBC Starter -->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-jdbc</artifactId>
</dependency>
<!-- MySQL JDBC Driver -->
<dependency><groupId>com.mysql</groupId><artifactId>mysql-connector-j</artifactId>
</dependency>
<dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.8.25</version>
</dependency>
2)增加application.properties配置项
server.port=8080
# mysql 数据库链接
spring.datasource.url=jdbc:mysql://127.0.0.1:3306/user?characterEncoding=UTF-8&useUnicode=true&useSSL=false&tinyInt1isBit=false&allowPublicKeyRetrieval=true&serverTimezone=Asia/Shanghai
spring.datasource.username=test
spring.datasource.password=password
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver# datax 相关配置,在生成文件时使用
datax.hdfs.defaultFS=hdfs://hadoop131:9000
datax.hdfs.path=/origin_data
# 需要生成job文件的表,多个用逗号隔开
datax.mysql.tables=t_user,t_user_test,t_sys_dict
# job文件存储位置
datax.savepath=d:/temp/
2、按照job.json格式创建好各个 vo
1)基础结构vo
@Data
public class DataxJobRoot {private Job job;
}
@Data
public class Job {private List<Content> content;private Setting setting = new Setting();
}
@Data
public class Content {private Reader reader;private Writer writer;
}
@Data
public class Setting {private Speed speed = new Speed();@Datapublic static class Speed {private String channel = "1";}
}
@Data
public class Reader {private String name;private Parameter parameter;
}
@Data
public class Writer {private String name;private Parameter parameter;@Datapublic static class MysqlParameter {private List<String> column;private List<Connection> connection;private String password;private String username;private String writeMode = "replace";}@Datapublic static class Connection {private String jdbcUrl;private List<String> table;}
}public class Parameter {
}
2)mysql2hdfs的vo实现类
@EqualsAndHashCode(callSuper = true)
@Data
public class MysqlReader extends Reader {public String getName() {return "mysqlreader";}@EqualsAndHashCode(callSuper = true)@Datapublic static class MysqlParameter extends Parameter {private List<String> column;private List<Connection> connection;private String password;private String username;private String where;}@Datapublic static class Connection {private List<String> jdbcUrl;private List<String> table;}
}@EqualsAndHashCode(callSuper = true)
@Data
public class HdfsWriter extends Writer {public String getName() {return "hdfswriter";}@EqualsAndHashCode(callSuper = true)@Datapublic static class HdfsParameter extends Parameter {private List<Column> column;private String compress = "gzip";private String encoding = "UTF-8";private String defaultFS;private String fieldDelimiter = "\t";private String fileName;private String fileType = "text";private String path;private String writeMode = "append";}@Datapublic static class Column {String name;String type;}
}
3)hdfs2mysql的vo实现类
@EqualsAndHashCode(callSuper = true)
@Data
public class HdfsReader extends Reader {@Overridepublic String getName() {return "hdfsreader";}public HdfsParameter getParameter() {return new HdfsParameter();}@EqualsAndHashCode(callSuper = true)@Datapublic static class HdfsParameter extends Parameter {private List<String> column = Collections.singletonList("*");private String compress = "gzip";private String encoding = "UTF-8";private String defaultFS;private String fieldDelimiter = "\t";private String fileName;private String fileType = "text";private String path;private String nullFormat = "\\N";}
}
@EqualsAndHashCode(callSuper = true)
@Data
public class MysqlWriter extends Writer {public String getName() {return "mysqlwriter";}public MysqlParameter getParameter() {return new MysqlParameter();}@EqualsAndHashCode(callSuper = true)@Datapublic static class MysqlParameter extends Parameter {private List<String> column;private List<Connection> connection;private String password;private String username;private String writeMode = "replace";}@Datapublic static class Connection {private String jdbcUrl;private List<String> table;}
}
3、创建Repository、Service类读取数据库表结构
@Repository
public class DatabaseInfoRepository {private final JdbcTemplate jdbcTemplate;@Autowiredpublic DatabaseInfoRepository(JdbcTemplate jdbcTemplate) {this.jdbcTemplate = jdbcTemplate;}// 获取所有表名public List<String> getAllTableNames() {String sql = "SHOW TABLES";return jdbcTemplate.queryForList(sql, String.class);}// 根据表名获取字段信息public List<Map<String, Object>> getTableColumns(String tableName) {String sql = "SHOW FULL COLUMNS FROM " + tableName;return jdbcTemplate.queryForList(sql);}
}
@Service
public class DatabaseInfoService {private final DatabaseInfoRepository databaseInfoRepository;@Autowiredpublic DatabaseInfoService(DatabaseInfoRepository databaseInfoRepository) {this.databaseInfoRepository = databaseInfoRepository;}public void printAllTablesAndColumns() {// 获取所有表名List<String> tableNames = databaseInfoRepository.getAllTableNames();// 遍历表名,获取并打印每个表的字段信息for (String tableName : tableNames) {System.out.println("Table: " + tableName);// 获取当前表的字段信息List<Map<String, Object>> columns = databaseInfoRepository.getTableColumns(tableName);// 遍历字段信息并打印for (Map<String, Object> column : columns) {System.out.println(" Column: " + column.get("Field") + " (Type: " + column.get("Type") + ")" + " (Comment: " + column.get("Comment") + ")");}System.out.println(); // 打印空行作为分隔}}/** 查询指定表的所有字段列表 */public List<String> getColumns(String tableName) {List<String> list = new ArrayList<>();// 获取当前表的字段信息List<Map<String, Object>> columns = databaseInfoRepository.getTableColumns(tableName);// 遍历字段信息并打印for (Map<String, Object> column : columns) {list.add(column.get("Field").toString());}return list;}/** 查询指定表的所有字段列表,封装成HdfsWriter格式 */public List<HdfsWriter.Column> getHdfsColumns(String tableName) {List<HdfsWriter.Column> list = new ArrayList<>();// 获取当前表的字段信息List<Map<String, Object>> columns = databaseInfoRepository.getTableColumns(tableName);// 遍历字段信息并打印for (Map<String, Object> column : columns) {String name = column.get("Field").toString();String typeDb = column.get("Type").toString();String type = "string";if (typeDb.equals("bigint")) {type = "bigint";} else if (typeDb.startsWith("varchar")) {type = "string";} else if (typeDb.startsWith("date") || typeDb.endsWith("timestamp")) {type = "date";}HdfsWriter.Column columnHdfs = new HdfsWriter.Column();columnHdfs.setName(name);columnHdfs.setType(type);list.add(columnHdfs);}return list;}
}
4、创建Service生成job.json文件
@Service
public class GenHdfs2mysqlJsonService {@Value("${spring.datasource.url}")private String url;@Value("${spring.datasource.password}")private String password;@Value("${spring.datasource.username}")private String username;@Value("${datax.mysql.tables}")private String tables;@Value("${datax.hdfs.defaultFS}")private String defaultFS;@Value("${datax.hdfs.path}")private String path;@Value("${datax.savepath}")private String savepath;@Autowiredprivate DatabaseInfoService databaseInfoService;/*** 生成 hdfs2mysql的job.json* @param table*/public void genHdfs2mysqlJson(String table) {DataxJobRoot root = new DataxJobRoot();Job job = new Job();root.setJob(job);Content content = new Content();HdfsReader reader = new HdfsReader();MysqlWriter writer = new MysqlWriter();content.setReader(reader);content.setWriter(writer);job.setContent(Collections.singletonList(content));HdfsReader.HdfsParameter hdfsParameter = reader.getParameter();hdfsParameter.setPath(path);hdfsParameter.setFileName(table + "_hdfs");hdfsParameter.setDefaultFS(defaultFS);MysqlWriter.MysqlParameter mysqlParameter = writer.getParameter();mysqlParameter.setPassword(password);mysqlParameter.setUsername(username);List<String> columns = databaseInfoService.getColumns(table);mysqlParameter.setColumn(columns);MysqlWriter.Connection connection = new MysqlWriter.Connection();connection.setJdbcUrl(url);connection.setTable(Collections.singletonList(table));mysqlParameter.setConnection(Collections.singletonList(connection));String jsonStr = JSONUtil.parse(root).toJSONString(2);System.out.println(jsonStr);File file = FileUtil.file(savepath, table + "_h2m.json");FileUtil.appendString(jsonStr, file, "utf-8");}/*** 生成 mysql2hdfs 的job.json* @param table*/public void genMysql2HdfsJson(String table) {DataxJobRoot root = new DataxJobRoot();Job job = new Job();root.setJob(job);Content content = new Content();HdfsWriter writer = new HdfsWriter();MysqlReader reader = new MysqlReader();content.setReader(reader);content.setWriter(writer);job.setContent(Collections.singletonList(content));HdfsWriter.HdfsParameter hdfsParameter = new HdfsWriter.HdfsParameter();writer.setParameter(hdfsParameter);hdfsParameter.setPath(path);hdfsParameter.setFileName(table + "_hdfs");hdfsParameter.setDefaultFS(defaultFS);List<HdfsWriter.Column> lstColumns = databaseInfoService.getHdfsColumns(table);hdfsParameter.setColumn(lstColumns);MysqlReader.MysqlParameter mysqlParameter = new MysqlReader.MysqlParameter();reader.setParameter(mysqlParameter);mysqlParameter.setPassword(password);mysqlParameter.setUsername(username);List<String> columns = databaseInfoService.getColumns(table);mysqlParameter.setColumn(columns);MysqlReader.Connection connection = new MysqlReader.Connection();connection.setJdbcUrl(Collections.singletonList(url));connection.setTable(Collections.singletonList(table));mysqlParameter.setConnection(Collections.singletonList(connection));String jsonStr = JSONUtil.parse(root).toJSONString(2);System.out.println(jsonStr);File file = FileUtil.file(savepath, table + "_m2h.json");FileUtil.appendString(jsonStr, file, "utf-8");}public void genAllTable() {Splitter.on(",").split(tables).forEach(this::genMysql2HdfsJson);}}
5、执行测试
调用genAllTable()方法,在配置的存储目录中自动生成每个表的job.json文件,结构示例如下:
{"job": {"content": [{"reader": {"name": "mysqlreader","parameter": {"column": ["id","name","msg","create_time","last_login_time","status"],"connection": [{"jdbcUrl": ["jdbc:mysql://127.0.0.1:3306/user?characterEncoding=UTF-8&useUnicode=true&useSSL=false&tinyInt1isBit=false&allowPublicKeyRetrieval=true&serverTimezone=Asia/Shanghai"],"table": ["t_user"]}],"password": "password","username": "test"}},"writer": {"name": "hdfswriter","parameter": {"column": [{"name": "id","type": "bigint"},{"name": "name","type": "string"},{"name": "msg","type": "string"},{"name": "create_time","type": "date"},{"name": "last_login_time","type": "date"},{"name": "status","type": "bigint"}],"compress": "gzip","encoding": "UTF-8","defaultFS": "hdfs://hadoop131:9000","fieldDelimiter": "\t","fileName": "t_user_hdfs","fileType": "text","path": "/origin_data","writeMode": "append"}}}],"setting": {"speed": {"channel": "1"}}}
}
至此,通过SpringBoot项目自动生成DataX的job.json文件,功能完成!
其中细节以及其他的reader\writer转换可以按照例子实现。
参考
- 【数仓】DataX软件安装及配置,从mysql同步到hdfs
- https://github.com/alibaba/DataX/blob/master/userGuid.md
相关文章:
【数仓】DataX 通过SpringBoot项目自动生成 job.json 文件
相关文章 【数仓】基本概念、知识普及、核心技术【数仓】数据分层概念以及相关逻辑【数仓】Hadoop软件安装及使用(集群配置)【数仓】Hadoop集群配置常用参数说明【数仓】zookeeper软件安装及集群配置【数仓】kafka软件安装及集群配置【数仓】flume软件安…...
注解式 WebSocket - 构建 群聊、单聊 系统
目录 前言 注解式 WebSocket 构建聊天系统 群聊系统(基本框架) 群聊系统(添加昵称) 单聊系统 WebSocket 作用域下无法注入 Spring Bean 对象? 考虑离线消息 前言 很久之前,咱们聊过 WebSocket 编程式…...
无线游戏手柄的测试(Windows11系统手柄调试方法)
实物 1、把游戏手柄的无线接收器插入到电脑usb接口中 2、【控制面板】----【查看设备和打印机】 3、【蓝牙和其它设备】--【更多设备和打印机设置】 4、鼠标右键【游戏控制器设置】 5、【属性】 6、【测试】(每个按键是否正常) 7、【校准】(…...
计算机的各种转换
一、存量容量的转换 特别注意:1 B 8 bit 转换为:1024 2(10) 括号中的数字为2的指数(即多少次方) 1KB2(10)B1024B; 括号中的数字为2的指数(即多少次方) 1MB2(10)KB1024KB2(20)B; 1GB2(10)MB1024MB2(3…...
Git分布式版本控制系统——Git常用命令(一)
一、获取Git仓库--在本地初始化仓库 执行步骤如下: 1.在任意目录下创建一个空目录(例如GitRepos)作为我们的本地仓库 2.进入这个目录中,点击右键打开Git bash窗口 3.执行命令git init 如果在当前目录中看到.git文件夹&#x…...
【Node.js】短链接
原文链接:Nodejs 第六十二章(短链接) - 掘金 (juejin.cn) 短链接是一种缩短长网址的方法,将原始的长网址转换为更短的形式。短链接的主要用途之一是在社交媒体平台进行链接分享。由于这些平台对字符数量有限制,长网址可…...
详解 Redis 在 Centos 系统上的安装
文章目录 详解 Redis 在 Centos 系统上的安装1. 使用 yum 安装 Redis 52. 创建符号链接3. 修改配置文件4. 启动和停止 Redis 详解 Redis 在 Centos 系统上的安装 1. 使用 yum 安装 Redis 5 如果是Centos8,yum 仓库中默认的 redis 版本就是5,直接 yum i…...
C语言 | Leetcode C语言题解之第17题电话号码的字母组合
题目: 题解: char phoneMap[11][5] {"\0", "\0", "abc\0", "def\0", "ghi\0", "jkl\0", "mno\0", "pqrs\0", "tuv\0", "wxyz\0"};char* digits…...
wordpress全站开发指南-面向开发者及深度用户(全中文实操)--wordpress中的著名循环
wordpress中的著名循环 首先,在深入研究任何代码之前,我们首先要确保我们有不止一篇博客文章可以工作。因此,我们要去自己的wordpress站点,从侧边栏单机Posts(文章),进行创建 在执行代码的时候会优先执行single.php如…...
libVLC 提取视频帧使用QGraphicsView渲染
在前面章节中,我们讲解了如何使用QWidget渲染每一帧视频数据,这种方法对 CPU 负荷较高。 libVLC 提取视频帧使用QWidget渲染-CSDN博客 后面又讲解了使用OpenGL渲染每一帧视频数据,使用 OpenGL去绘制,利用 GPU 减轻 CPU 计算负荷…...
大厂Java笔试题之判断字母大小写
/*** 题目:如果一个由字母组成的字符串,首字母是大写,那么就统计该字符串中大写字母的数量,并输出该字符串中所有的大写字母。否则,就输出* 该字符串不是首字母大写*/ public class Demo2 {public static void main(St…...
场景文本检测识别学习 day02(AlexNet论文阅读、ResNet论文精读)
怎么读论文 在第一遍阅读的时候,只需要看题目,摘要和结论,先看题目是不是跟我的方向有关,看摘要是不是用到了我感兴趣的方法,看结论他是怎么解决摘要中提出的问题,或者怎么实现摘要中的方法,然…...
4.9日总结
1.MySQL概述 1.数据库基本概念:存储数据的仓库,数据是有组织的进行存储 2.数据库管理系统:操纵和管理数据库的大型软件 3.SQL:操作关系型数据库的编程语言,定义了一套操作型数据库统一标准 2.MySQL数据库 关系型数…...
python第四次作业
1、找出10000以内能被5或6整除,但不能被两者同时整除的数(函数) def func():for i in range(10001):if (i % 5 0 or i % 6 0) and i % 30 ! 0:print(i,end " ")func() 2、写一个方法,计算列表所有偶数下标元素的…...
工业通信原理——Modbus-TCP通信规约定义
工业通信原理——Modbus-TCP通信规约定义 前言 Modbus TCP是一种基于TCP/IP协议的通信规约,用于在客户机和服务器之间进行数据通信。 Modbus-TCP通信规约定义 Modbus TCP通信规约的定义,包括客户机请求和服务器响应的基本流程: 连接建立…...
Vue - 4( 8000 字 Vue 入门级教程)
一: Vue 初阶 1.1 关于不同版本的 Vue Vue.js 有不同版本,如 vue.js 与 vue.runtime.xxx.js,这些版本主要针对不同的使用场景和需求进行了优化,区别主要体现在以下几个方面: 完整版 vs 运行时版: vue.js&…...
5.118 BCC工具之xfsslower.py解读
一,工具简介 xfsslower显示了XFS的读取、写入、打开和fsync操作,这些操作慢于一个阈值。 二,代码示例 #!/usr/bin/env pythonfrom __future__ import print_function from bcc import BPF import argparse from time import strftime# arguments examples = ""…...
Spark编程基础
一、RDD入门 1.RDD是什么? RDD是一个容错的、只读的、可进行并行操作的数据结构,是一个分布在集群各个节点中的存放元素的集合,即弹性分布式数据集。 2.RDD的三种创建方式 第一种是将程序中已存在的集合(如集合、列表、数组&a…...
React 状态管理:高效处理数组数据的5种方法
1.原因 为什么在 React 中,状态(state)如果是数组类型,需要单独处理?主要有以下几个原因: 不可变性(Immutability): React 中的状态是不可变的,意味着我们不能直接修改状态,而是要创建一个新的状态对象。对于数组来说,直接修改数组元素是不符合 React 的设计原则的…...
SSH和交换机端口安全概述
交换机的安全是一个很重要的问题,因为它可能会遭受到一些恶意的攻击,例如MAC泛洪攻击、DHCP欺骗和耗竭攻击、中间人攻击、CDP 攻击和Telnet DoS 攻击等,为了防止交换机被攻击者探测或者控制,必须采取相应的措施来确保交换机的安全…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解
文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一:HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二:Floyd 快慢指针法(…...
2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案
一、延迟敏感行业面临的DDoS攻击新挑战 2025年,金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征: AI驱动的自适应攻击:攻击流量模拟真实用户行为,差异率低至0.5%,传统规则引…...
Linux操作系统共享Windows操作系统的文件
目录 一、共享文件 二、挂载 一、共享文件 点击虚拟机选项-设置 点击选项,设置文件夹共享为总是启用,点击添加,可添加需要共享的文件夹 查询是否共享成功 ls /mnt/hgfs 如果显示Download(这是我共享的文件夹)&…...
