场景文本检测识别学习 day02(AlexNet论文阅读、ResNet论文精读)
怎么读论文
- 在第一遍阅读的时候,只需要看题目,摘要和结论,先看题目是不是跟我的方向有关,看摘要是不是用到了我感兴趣的方法,看结论他是怎么解决摘要中提出的问题,或者怎么实现摘要中的方法,然后决定我要不要继续看第二遍
- 在第二遍阅读的时候不需要关注太过工程性的技巧,比如输入数据是怎么转换的,网络是怎么做分布式训练的,第二遍阅读重点关注方法上的创新或者方法上的技巧,因为工程上的技巧很复杂,不容易复现,但是方法上的创新相对比较简单
AlexNet论文精读感想
- 在介绍部分,我们不能只介绍自己使用的方法,这很窄,比如我想用DETR,那我就不能只介绍DETR,我可以介绍一下传统的OCR,比如CNN,YOLO等
- 对于图片领域来说,整个机器学习就是在做压缩,将本来人能看懂的输入图片,经过一个模型,最后压缩成一个向量,这个向量机器能够识别,机器能够学习之后,就能够拿它来做搜索、分类等各种各样的事情
- 权重衰减(weight decay)在深度学习中等价于L2正则化,都是让权重w的更新额外包括一个权重衰减项 λ w k λw_k λwk,从而当权重特别大的时候,w的更新也会特别大。而往往刚开始的损失特别大,即模型会让权重w以特别大的步伐向较小的权重w迈进,最终导致不让模型学习到过大的权重,权重w的更新规则如下:

- 正则化是机器学习和统计建模中常用的一种技术,旨在减少模型的过拟合,提高模型的泛化能力。通过对模型添加约束或惩罚,正则化方法鼓励模型学习更加平滑或更简单的预测函数,从而不会对训练数据中的随机噪声做过度复杂的拟合。在实践中,这通常意味着对模型参数(如权重)的大小进行限制。
- L1正则化:向损失函数添加参数的绝对值之和作为惩罚项。L1正则化倾向于产生稀疏的参数向量,即大多数参数值为零,这有助于特征选择,因为它可以自动忽略不重要的特征。
- L2正则化:向损失函数添加参数的平方和作为惩罚项。L2正则化鼓励参数值趋向于较小的大小,从而避免任何参数对模型的预测产生过大的影响。这种方法对于处理参数间高度相关的数据特别有效。
ResNet论文精读感想
- 在计算机视觉领域,可以重点关注某些竞赛的冠军、亚军,特别是那些提出了不一样的架构、方法的论文
相关文章:
场景文本检测识别学习 day02(AlexNet论文阅读、ResNet论文精读)
怎么读论文 在第一遍阅读的时候,只需要看题目,摘要和结论,先看题目是不是跟我的方向有关,看摘要是不是用到了我感兴趣的方法,看结论他是怎么解决摘要中提出的问题,或者怎么实现摘要中的方法,然…...
4.9日总结
1.MySQL概述 1.数据库基本概念:存储数据的仓库,数据是有组织的进行存储 2.数据库管理系统:操纵和管理数据库的大型软件 3.SQL:操作关系型数据库的编程语言,定义了一套操作型数据库统一标准 2.MySQL数据库 关系型数…...
python第四次作业
1、找出10000以内能被5或6整除,但不能被两者同时整除的数(函数) def func():for i in range(10001):if (i % 5 0 or i % 6 0) and i % 30 ! 0:print(i,end " ")func() 2、写一个方法,计算列表所有偶数下标元素的…...
工业通信原理——Modbus-TCP通信规约定义
工业通信原理——Modbus-TCP通信规约定义 前言 Modbus TCP是一种基于TCP/IP协议的通信规约,用于在客户机和服务器之间进行数据通信。 Modbus-TCP通信规约定义 Modbus TCP通信规约的定义,包括客户机请求和服务器响应的基本流程: 连接建立…...
Vue - 4( 8000 字 Vue 入门级教程)
一: Vue 初阶 1.1 关于不同版本的 Vue Vue.js 有不同版本,如 vue.js 与 vue.runtime.xxx.js,这些版本主要针对不同的使用场景和需求进行了优化,区别主要体现在以下几个方面: 完整版 vs 运行时版: vue.js&…...
5.118 BCC工具之xfsslower.py解读
一,工具简介 xfsslower显示了XFS的读取、写入、打开和fsync操作,这些操作慢于一个阈值。 二,代码示例 #!/usr/bin/env pythonfrom __future__ import print_function from bcc import BPF import argparse from time import strftime# arguments examples = ""…...
Spark编程基础
一、RDD入门 1.RDD是什么? RDD是一个容错的、只读的、可进行并行操作的数据结构,是一个分布在集群各个节点中的存放元素的集合,即弹性分布式数据集。 2.RDD的三种创建方式 第一种是将程序中已存在的集合(如集合、列表、数组&a…...
React 状态管理:高效处理数组数据的5种方法
1.原因 为什么在 React 中,状态(state)如果是数组类型,需要单独处理?主要有以下几个原因: 不可变性(Immutability): React 中的状态是不可变的,意味着我们不能直接修改状态,而是要创建一个新的状态对象。对于数组来说,直接修改数组元素是不符合 React 的设计原则的…...
SSH和交换机端口安全概述
交换机的安全是一个很重要的问题,因为它可能会遭受到一些恶意的攻击,例如MAC泛洪攻击、DHCP欺骗和耗竭攻击、中间人攻击、CDP 攻击和Telnet DoS 攻击等,为了防止交换机被攻击者探测或者控制,必须采取相应的措施来确保交换机的安全…...
K-means聚类算法的原理、应用与实例
文章目录 K-means 聚类算法:原理K-means 聚类算法的应用K-means 聚类算法的优化与改进 一个使用 K-means 聚类算法进行客户细分的简单实例 K-means 聚类算法:原理 K-means 算法是一种经典的无监督学习方法,用于对未标记的数据集进行分群&…...
使用SquareLine Studio创建LVGL项目到IMX6uLL平台
文章目录 前言一、SquareLine Studio是什么?二、下载安装三、工程配置四、交叉编译 前言 遇到的问题:#error LV_COLOR_DEPTH should be 16bit to match SquareLine Studios settings,解决方法见# 四、交叉编译 一、SquareLine Studio是什么…...
MATLAB计算投资组合的cVaR和VaR
计算条件风险价值 (Conditional Value-at-Risk, cVaR) 是一种衡量投资组合风险的方法,它关注的是损失分布的尾部风险。 MATLAB代码如下: clc;close all;clear all;warning off;%清除变量 rand(seed, 100); randn(seed, 100); format long g;% 随机产生数据&#x…...
YOLOv7全网独家改进: 卷积魔改 | 变形条状卷积,魔改DCNv3二次创新
💡💡💡本文独家改进: 变形条状卷积,DCNv3改进版本,不降低精度的前提下相比较DCNv3大幅度运算速度 💡💡💡强烈推荐:先到先得,paper级创新,直接使用; 💡💡💡创新点:1)去掉DCNv3中的Mask;2)空间域上的双线性插值转改为轴上的线性插值; 💡💡💡…...
使用vue3搭建一个CRM(客户关系管理)系统
目录 1. 需求分析 2. 设计 3. 技术选型 4. 开发环境搭建 5. 前端开发 6. 后端开发 7. 数据库搭建 8. 测试 9. 部署 10. 维护和迭代 总结 搭建一个CRM(客户关系管理)系统是一个复杂的项目,涉及到需求分析、设计、开发、测试和部署等…...
Linux虚拟内存简介
Linux,像多数现代内核一样,采用了虚拟内存管理技术。该技术利用了大多数程序的一个典型特征,即访问局部性(locality of reference),以求高效使用CPU和RAM(物理内存)资源。大多数程序…...
合并单元格的excel文件转换成json数据格式
github地址: https://github.com/CodeWang-Ay/DataProcess 类型1 需求1: 类似于数据格式: https://blog.csdn.net/qq_44072222/article/details/120884158 目标json格式 {"位置": 1, "名称": "nba球员", "国家": "美国"…...
云平台和云原生
目录 1.0 云平台 1.1.0 私有云、公有云、混合云 1.1.1 私有云 1.1.2 公有云 1.1.3 混合云 1.2 常见云管理平台 1.3 云管理的好处 1.3.1 多云的统一管理 1.3.2 跨云资源调度和编排需要 1.3.3 实现多云治理 1.3.4 多云的统一监控和运维 1.3.5 统一成本分析和优化 1.…...
ES6 => 箭头函数
目录 语法基本形式 参数 函数体 特点 箭头函数(Arrow Function)是ES6(ECMAScript 2015)中引入的一种新的函数语法,它提供了一种更简洁的方式来编写函数。箭头函数有几个显著的特点和优势,下面我们来详细…...
vue将html生成pdf并分页
jspdf html2canvas 此方案有很多的css兼容问题,比如虚线边框、svg、页数多了内容显示不全、部分浏览器兼容问题,光是解决这些问题就耗费了我不少岁月和精力 后面了解到新的技术方案: jspdf html-to-image npm install --save html-to-i…...
数字社会下的智慧公厕:构筑智慧城市的重要组成部分
智慧城市已经成为现代城市发展的趋势,而其中的数字化转型更是推动未来社会治理体系和治理能力现代化的必然要求。在智慧城市建设中,智慧公厕作为一种新形态的信息化公共厕所,扮演着重要角色。本文智慧公厕源头实力厂家广州中期科技有限公司&a…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
android RelativeLayout布局
<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...
