pytorch如何搭建一个最简单的模型,
一、搭建模型的步骤
在 PyTorch 中,可以使用 torch.nn
模块来搭建深度学习模型。具体步骤如下:
-
定义一个继承自
torch.nn.Module
的类,这个类将作为我们自己定义的模型。 -
在类的构造函数
__init__()
中定义网络的各个层和参数。可以使用torch.nn
模块中的各种层,如Conv2d
、BatchNorm2d
、Linear
等。 -
在类中定义前向传播函数
forward()
,实现模型的具体计算过程。 -
将模型部署到 GPU 上,可以使用
model.to(device)
将模型移动到指定的 GPU 设备上。
二、简单的例子
下面是一个简单的例子,演示了如何使用 torch.nn
模块搭建一个简单的全连接神经网络:
import torch.nn as nnclass MyNet(nn.Module):def __init__(self):super(MyNet, self).__init__()self.fc1 = nn.Linear(784, 512)self.relu = nn.ReLU()self.fc2 = nn.Linear(512, 10)def forward(self, x):x = x.view(-1, 784)x = self.fc1(x)x = self.relu(x)x = self.fc2(x)return x
MyNet
的神经网络类,它继承自 torch.nn.Module
。在构造函数 __init__()
中定义了两个全连接层,一个 ReLU 激活函数,并将它们作为网络的成员变量。在前向传播函数 forward()
中,首先将输入的图像数据 x
压成一维向量,然后依次经过两个全连接层和一个 ReLU 激活函数,最终得到模型的输出结果。
在模型训练之前,需要将模型部署到 GPU 上,可以使用以下代码将模型移动到 GPU 上:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = MyNet().to(device)
如何将loss函数添加到模型中去呢?
在 PyTorch 中,通常将损失函数作为单独的对象来定义,并在训练过程中手动计算和优化损失。为了将损失函数添加到模型中,需要在模型类中添加一个成员变量,然后在前向传播函数中计算损失。
下面是一个例子,演示了如何在模型中添加交叉熵损失函数:
import torch.nn as nnclass MyNet(nn.Module):def __init__(self):super(MyNet, self).__init__()self.fc1 = nn.Linear(784, 512)self.relu = nn.ReLU()self.fc2 = nn.Linear(512, 10)self.loss_fn = nn.CrossEntropyLoss()def forward(self, x, y):x = x.view(-1, 784)x = self.fc1(x)x = self.relu(x)x = self.fc2(x)loss = self.loss_fn(x, y)return x, loss
在模型类 MyNet
的构造函数中添加了一个成员变量 self.loss_fn
,它是交叉熵损失函数。在前向传播函数 forward()
中,传入两个参数 x
和 y
,其中 x
是输入图像数据,y
是对应的标签。在函数中先执行正向传播计算,然后计算交叉熵损失,并将损失值作为输出返回。
实际训练代码
在实际训练过程中,首先将模型输出结果 x
和标签 y
传入前向传播函数 forward()
中计算损失,然后使用优化器更新模型的权重和偏置。代码如下:
model = MyNet()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
for inputs, labels in data_loader:inputs = inputs.to(device)labels = labels.to(device)optimizer.zero_grad()outputs, loss = model(inputs, labels)loss.backward()optimizer.step()
在上面的代码中,使用随机梯度下降优化器 torch.optim.SGD
来更新模型的参数。在每个批次中,首先将输入数据和标签移动到 GPU 上,然后使用 optimizer.zero_grad()
将梯度清零。接着执行前向传播计算,并得到损失值 loss
。最后使用 loss.backward()
计算梯度并执行反向传播,使用 optimizer.step()
更新模型参数。
相关文章:
pytorch如何搭建一个最简单的模型,
一、搭建模型的步骤 在 PyTorch 中,可以使用 torch.nn 模块来搭建深度学习模型。具体步骤如下: 定义一个继承自 torch.nn.Module 的类,这个类将作为我们自己定义的模型。 在类的构造函数 __init__() 中定义网络的各个层和参数。可以使用 to…...

JS实现css的hover效果,兼容移动端
Hi I’m Shendi JS实现css的hover效果,兼容移动端 功能概述 CSS的hover即触碰时触发,在电脑端鼠标触碰,移动端手指触摸 有的时候光靠css实现不了一些效果,例如元素触发hover,其他元素触发动画效果,所以需要…...

企业微信的后台怎么进入和管理?
企业微信管理后台,只有企业的管理员才可以进企业微信后台,普通员工想要进入后台、可以联系管理员将你设置为后台管理员。 一、怎么进入企业微信后台 管理员进入企业微信后台有两种路径; 路径一: 企业管理员直接在浏览器搜索企…...

【2223sW2】LOG2
写在前面 好好学习,走出宿舍,走向毕设! 一些心路历程记录,很少有代码出现 因为鬼知道哪条代码到时候变成毕设的一部分了咧,还是不要给自己的查重挖坑罢了 23.3.2 检验FFT 早上师兄帮忙看了一眼我画的丑图ÿ…...

buuctf-web-[SUCTF 2018]MultiSQL1
打开界面,全部点击一遍,只有注册和登录功能可以使用注册一个账号,注册admin提示用户存在,可能有二次注入,注册admin自动加了一个字符,无法二次注入,点击其他功能点换浏览器重新登录后࿰…...

GitLab创建仓库分配权限
文章目录创建仓库分配权限参考资料创建仓库 点击“New project”创建新项目 分配权限 点击左侧菜单栏“Members”成员,菜单 “Invite member”邀请成员,添加人员;“Invite group”邀请组织,添加一个组织所有成员下面输入框搜索…...

代码随想录-51-110.平衡二叉树
目录前言题目1.求高度和深度的区别节点的高度节点的深度2. 本题思路分析:3. 算法实现4. pop函数的算法复杂度5. 算法坑点前言 在本科毕设结束后,我开始刷卡哥的“代码随想录”,每天一节。自己的总结笔记均会放在“算法刷题-代码随想录”该专…...

项目实战典型案例27——对生产环境以及生产数据的敬畏之心
对生产环境以及生产数据的敬畏之心一:背景介绍总结升华一:背景介绍 本篇博客是对项目开发中出现的对生产环境以及生产数据的敬畏之心行的总结并进行的改进。目的是将经历转变为自己的经验。通过博客的方式分享给大家,大家一起共同进步和提高…...

如何查找你的IP地址?通过IP地址能直接定位到你家!
我们ip地址分为A、B、C、D、E共5类,每一类地址范围不同,从A到Eip地址范围依次递减,其中哦,D和E是保留地址,我们用不了。A、B、C3类地址很多都被美国这样的西方国家分走了,而留给我们的就剩有限的地址了&…...

Containers--array类
Array 类 简介 Array 类是一个固定大小的数组,它的大小在编译时就已经确定了。Array 类的大小是固定的,因此它的大小不能改变。 数组是固定大小的序列容器:它们以严格的线性顺序保存特定数量的元素。 在内部,数组除了包含的元素之外不保留…...

LinqConnect兼容性并支持Visual Studio 2022版本
LinqConnect兼容性并支持Visual Studio 2022版本 现在支持Microsoft Visual Studio 2022版本17.5预览版。 添加了Microsoft.NET 7兼容性。 共享代码-共享相同的代码,以便在不同的平台上处理数据。LinqConnect是一种数据库连接解决方案,适用于不同的基于.…...

流量监管与整形
流量监管与整形概览流量监管介绍流量监管令牌桶流量监管的具体实现单桶单速流量监管双桶单速流量监管双桶双速流量监管流量整形介绍GTS(Generic Traffic Shaping)LR(Line Rate)流量整形与流量监管的区别概览 流量整形是对报文的速…...
详解init 容器
什么是init容器 init 容器是一种特殊容器,在 Pod 内的应用容器启动之前运行。Init 容器可以包括一些应用镜像中不存在的实用工具和安装脚本。 你可以在 Pod 的规约中与用来描述应用容器的 containers 数组平行的位置指定 Init 容器 每个 Pod 中可以包含多个容器&…...
RequestResponseBodyMethodProcessor
既是一个参数解析器,也是一个返回结果处理器。 1.持有消息转换器的集合 protected final List<HttpMessageConverter<?>> messageConverters;2.作为参数解析器,例如对RequestBody标识的参数进行解析 判断是否支持当前类型的参数 Overrid…...

函数的极限
目录 函数的极限 函数极限的定义: 例题: 左右极限: 自变量趋于无穷大时函数的极限: 例题: 函数极限的性质: 函数极限与数列极限之间的关系: 函数的极限 函数极限的定义: 一句…...
dnf命令使用
1. 简介 DNF是新一代的rpm软件包管理器。他首先出现在 Fedora 18 这个发行版中。而最近,它取代了yum,正式成为 Fedora 22 的包管理器 DNF包管理器克服了YUM包管理器的一些瓶颈,提升了包括用户体验,内存占用,依赖分析…...

CLIP CLAP
文章目录CLIPabstractintroCLAP: LEARNING AUDIO CONCEPTS FROM NATURAL LANGUAGE SUPERVISIONabstractmethodCLIP open AI2021.2代码&预训练模型 abstract 原有的基于有监督数据训练的计算机分类任务,在面对新的分类目标时泛化性和可用性都会变差࿱…...
Debezium报错处理系列之五十二:解决Sql Server数据库安装后修改主机名导致sqlserver数据库实例名称没有修改从而无法设置CDC的问题
Debezium报错处理系列之五十二:解决Sql Server数据库安装后修改主机名导致sqlserver数据库实例名称没有修改从而无法设置CDC的问题 一、完整报错二、错误原因三、解决方法Debezium报错处理系列一:The db history topic is missing. Debezium报错处理系列二:Make sure that t…...

scratch老鹰捉小鸡 电子学会图形化编程scratch等级考试二级真题和答案解析2022年12月
目录 scratch老鹰捉小鸡 一、题目要求 1、准备工作 2、功能实现 二、案例分析 <...
概率论小课堂:公理化过程(大数据方法解决问题的理论基础)
文章目录 引言I 初等概率论1.1 19世纪概率论的最大难题1.2 伯努利版本的大数定理1.3 切比雪夫版本的大数定理II 现代概率论(用公理来描述概率论)2.1 柯尔莫哥洛夫2.1 用公理来描述概率论III 最基本的概率论定理3.1 互补事件的概率之和等于13.2 不可能事件的概率为零引言 前苏…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...

人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...