如何从零开始训练一个语言模型
如何从零开始训练一个语言模型
本文主要三个方面介绍语言模型的训练过程,主要包括:数据集介绍(包含预训练数据和微调数据),数据的预处理,模型训练和微调,但不涉及对齐阶段(RLHF),对齐需要对齐的数据,也需要不同的预处理方式,对齐的目的是构建一个可以与人类价值观保持一致的LLM,减少虚假有害信息的输出。
数据集
Pretrain Data:
预训练数据主要来自从互联网上收集的文本数据,token的规模大概在trillion级别,整体质量偏低。
SFT Data:
SFT(Supervised Fine-Tuning)数据一般由指令,输入,响应
组成,指令和输入一起组成prompt
,作为模型的输入,响应作为标签。这类数据对质量要求较高,一般由人工构造,也可由GPT4生成。
预处理
分词Tokenizer:把文本序列转为为token序列。
Pretrain Process:
预训练是通过自监督(SSL)的方式训练,也就是预测下个词(token),数据处理方式如下:
def __getitem__(self, index: int):sample = self.data[index]X=np.array(sample[:-1]).astype(np.int64)Y=np.array(sample[1:]).astype(np.int64)return torch.from_numpy(X),torch.from_numpy(Y)
例如:文本分词后:sample = [1, 2, 3, 4, 5, 6]
- x : 1, 2, 3, 4, 5
- y : 2, 3, 4, 5, 6
SFT Process:
SFT(Supervised Fine-Tuning)阶段喂给模型的示例遵循(prompt、response)的格式,prompt包含:指令+输入,也称为指令数据,数据处理方式如下:
- 拼接指令和输入
# 拼接指令和输入字符
q_lst, a_lst = [],[]
for per in data:q=per['instruction']i=per['input']a=per['output']q=q+iq_lst.append(q)a_lst.append(a)
df=pd.DataFrame(columns=['prompt','answer'])
df['prompt']=q_lst
df['answer']=a_lst
- 拼接提示和响应,并添加分割符,同时生成掩码,掩码的作用是在计算loss时屏蔽prompt部分。
def __getitem__(self, index: int):sample = self.df.iloc[index]# 分词tokenizerprompt = self.tokenizer.encode(sample['prompt'],add_special_tokens=False)answer = self.tokenizer.encode(sample['answer'],add_special_tokens=False)# 截断最大长度if len(prompt) > self.prompt_max_len:prompt = prompt[:self.prompt_max_len-2]if len(answer) > self.answer_max_len:answer = answer[:self.answer_max_len-2]# 拼接提示和响应,同时添加特殊token,标识提示和响应结束inputs = prompt+[self.bos]+answer+[self.eos]# 掩码长度=提示长度prompt_length = inputs.index(self.bos)mask_position = prompt_length - 1# 填充至最大长度pad_len = self.max_length - len(inputs)inputs = inputs + [self.pad] * pad_lenif pad_len==0:# 屏蔽提示和填充位置loss_mask = [0]*prompt_length+[1]*(len(inputs[mask_position+1:]))else:loss_mask = [0]*prompt_length+[1]*(len(inputs[mask_position+1:-pad_len])) + [0]*pad_leninputs = np.array(inputs)X=np.array(inputs[:-1]).astype(np.int64)Y=np.array(inputs[1:]).astype(np.int64)loss_mask=np.array(loss_mask[:-1])return torch.from_numpy(X),torch.from_numpy(Y),torch.from_numpy(loss_mask)
例如:bos : 8
, eos : 16
, pad : 0
,max_length = 16
inputs = prompt + [bos] + answer + [eos] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
-
pad_len = 0:
-
prompt = [1, 2, 3, 4, 5, 6, 7]
-
answer = [9, 10, 11, 12, 13, 14, 15]
-
inputs = prompt + [bos] + answer + [eos] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
- y = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- mask = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]
-
pad_len > 0:
-
prompt = [1, 2, 3, 4, 5, 6, 7]
-
answer = [9, 10, 11, 12, 13]
-
inputs = prompt + [bos] + answer + [eos] + [pad]*2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 0, 0]
- x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 0, 0]
- y = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 0, 0]
- mask = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
预训练阶段
预训练阶段采用标准的语言模型建模来最大化目标函数:
L p r e t r a i n ( X ) = ∑ i l o g P ( x i ∣ x i − k , . . . , x i − 1 ; Θ ) L_{pretrain}(\mathcal{X}) = \sum_i logP(x_i|x_{i-k},...,x_{i-1};\mathcal{\Theta}) Lpretrain(X)=i∑logP(xi∣xi−k,...,xi−1;Θ)
-
x = x 1 , . . . , x n \mathcal{x} = {x_1, ..., x_n} x=x1,...,xn :语料
-
k k k : 上下文长度
-
P P P : 条件概率由参数为 Θ \Theta Θ的神经网络模型建模
神经网络模型(包含多个transformer模块),模型输入经过分词后(tokenzier)后的token序列,首先经过嵌入层,然后经过transformer_block
,最后经过输出层输出token概率分布。
h 0 = X W e + W p h_0 = XW_e + W_p h0=XWe+Wp
h l = t r a n s f o r m e r b l o c k ( h l − 1 ) , ∀ i ∈ [ 1 , n ] h_l = transformer_{block}(h_{l-1}), \forall i \in [1,n] hl=transformerblock(hl−1),∀i∈[1,n]
P ( u ) = s o f t m a x ( h n W e T ) P(u) = softmax(h_nW_e^T) P(u)=softmax(hnWeT)
- W e W_e We : 嵌入矩阵
- W p W_p Wp : 位置嵌入矩阵
微调阶段
微调阶段的数据前面已经提过,由3部分组成: X = { X i n s t r u c t i o n , X i n p u t , X a n s w e r } \mathcal{X} = \{X_{instruction} , X_{input},X_{answer}\} X={Xinstruction,Xinput,Xanswer}
经过预处理后: X = X i n s t r u c t i o n + X i n p u t + b o s + X a n s w e r + e o s \mathcal{X} = X_{instruction}+X_{input}+bos+X_{answer}+eos X=Xinstruction+Xinput+bos+Xanswer+eos
在微调阶段,模型结构不变,目标改变为:
L s f t ( X a n s w e r ) = ∑ i = l o c a l ( b o s ) l o c a l ( e o s ) l o g P ( x i ∣ x i − k , . . . , x i − 1 ; Θ ) L_{sft}(\mathcal{X_{answer}}) = \sum_{i=local(bos)}^{local(eos)} logP(x_i|x_{i-k},...,x_{i-1};\mathcal{\Theta}) Lsft(Xanswer)=i=local(bos)∑local(eos)logP(xi∣xi−k,...,xi−1;Θ)
在微调阶段只关注answer
部分token序列的联合概率分布最大化。
经过SFT(Supervised Fine-Tuning)阶段,通过给模型展示如何正确地响应不同的提示(指令)(例如问答,摘要,翻译等)的示例,模型会学会模仿示例数据中的响应行为,学会问答、翻译、摘要等能力。指令微调优势在于,对于任何特定任务的专用模型,只需要在通用大模型的基础上通过特定任务的指令数据进行微调,就可以解锁LLM在特定任务上的能力,不在需要从头去构建专用的小模型。
相关文章:

如何从零开始训练一个语言模型
如何从零开始训练一个语言模型 #mermaid-svg-gtUlIrFtNPw1oV5a {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-gtUlIrFtNPw1oV5a .error-icon{fill:#552222;}#mermaid-svg-gtUlIrFtNPw1oV5a .error-text{fill:#5522…...

Python 设计一个监督自己的软件1
基本要求:每做一件事,软件就会按照事情权重加相应的分数,总分数也会增加,要可视化页面 使用Python编写的一个简单的日常任务记录和评分系统,包括可视化页面。 首先,我们定义一个任务字典,其中包含各种日常任务及其对应的权重分数…...

商家转账到零钱权限开通操作攻略
商家转账到零钱是什么? 商家转账到零钱是微信商户号里的一个功能,很早以前叫企业付款到零钱。 从2022年5月18日,原“企业付款到零钱”升级为“商家转账到零钱”,已开通商户的功能使用暂不受影响,新开通商户可前往「产…...

【DAC‘ 2022】Kite: A Family of Heterogeneous Interposer Topologies
Kite: A Family of Heterogeneous Interposer Topologies Enabled via Accurate Interconnect Modeling 背景和动机 背景动机 工作内容 KITE 拓扑 实验方法和评估结果 Kite: A Family of Heterogeneous Interposer Topologies Enabled via Accurate Interconnect Modeling 通…...

数据结构—堆
什么是堆 堆是一种特殊的树形结构,其中每个节点都有一个值。堆可以分为两种类型:最大堆和最小堆。在最大堆中,每个节点的值都大于等于其子节点的值;而在最小堆中,每个节点的值都小于等于其子节点的值。这种特性使得堆…...

Kubernetes学习笔记8
Kubernetes集群客户端工具kubectl 我们已经能够部署Kubernetes了,那么我们如何使用Kubernetes集群运行企业的应用程序呢?那么,我们就需要使用命令行工具kubectl。 kubectl就是控制Kubernetes的驾驶舱,它允许你执行所有可能的Kube…...

[渗透利器]在线渗透测试工具箱?测评
前言 hxd更新完了在线工具箱,受邀写一下使用体验以及测评 使用体验 这个工具箱设计的比较轻便,以往用过的工具箱大多都是以离线打包的方式发布,该工具箱,作者自己掏钱自己买服务器,自己买带宽,先生大义。…...

rocketmq和rabbitmq总是分不清?
1. 官方解答 摘自百度搜索: 2. 通俗易懂的回答...

利用Python ARM网关仓储物流AGV小车控制器
在现代智慧物流体系中,高效的信息管理系统是物流中心实现精准跟踪货物、科学管理库存及优化配送路线的关键环节。通过采用ARM架构的工控机或网关,并结合Python的二次开发能力,可以有效集成并强化物流管理系统的数据处理与通信功能,…...

Transformer详解和知识点总结
目录 1. 注意力机制1.1 注意力评分函数1.2 多头注意力(Multi-head self-attention) 2. Layer norm3. 模型结构4. Attention在Transformer中三种形式的应用 论文:https://arxiv.org/abs/1706.03762 李沐B站视频:https://www.bilibi…...

【Ubuntu】update-alternatives 命令详解
1、查看所有候选项 sudo update-alternatives --list java 2、更换候选项 sudo update-alternatives --config java 3、自动选择优先级最高的作为默认项 sudo update-alternatives --auto java 4、删除候选项 sudo update-alternatives --rem…...

数据结构之堆练习题及PriorityQueue深入讲解!
题外话 上午学了一些JavaEE初阶知识,下午继续复习数据结构内容 正题 本篇内容把堆的练习题做一下 第一题 1.下列关键字序列为堆的是:( A ) A: 100,60,70,50,32,65 B: 60,70,65,50,32,100 C: 65,100,70,32,50,60 D: 70,65,100,32,50,60 E: 32,50,100,70,65,60 …...

MySQL——Linux安装包
一、下载安装包 MySQL下载路径: MySQL :: MySQL Downloads //默认下载的企业版MySQL 下载社区版MySQL MySQL :: MySQL Community Downloads 1、源码下载 2、仓库配置 3、二进制安装包 基于官方仓库安装 清华centos 软件仓库: Index of /cen…...

MySQL学习笔记(数据类型, DDL, DML, DQL, DCL)
Learning note 1、前言2、数据类型2.1、数值类型2.2、字符串类型2.3、日期类型 3、DDL总览数据库/表切换数据库查看表内容创建数据库/表删除数据库/表添加字段删除字段表的重命名修改字段名(以及对应的数据类型) 4、DML往字段里写入具体内容修改字段内容…...

Asible管理变量与事实——管理变量(1)
Ansible简介 Ansible支持利用变量来储存值,并在Ansible项目的所有文件中重复使用这些值。这可以简化项目的创建和维护,并减少错误的数量。 通过变量,您可以轻松地在Ansible项目中管理给定环境的动态值。例如,变量可能包含下面这些…...

【微服务】------微服务架构技术栈
目前微服务早已火遍大江南北,对于开发来说,我们时刻关注着技术的迭代更新,而项目采用什么技术栈选型落地是开发、产品都需要关注的事情,该篇博客主要分享一些目前普遍公司都在用的技术栈,快来分享一下你当前所在用的技…...

【SCI绘图】【小提琴系列1 python】绘制按分类变量分组的垂直小提琴图
SCI,CCF,EI及核心期刊绘图宝典,爆款持续更新,助力科研! 本期分享: 【SCI绘图】【小提琴系列1 python】绘制按分类变量分组的垂直小提琴图,文末附完整代码 小提琴图是一种常用的数据可视化工具…...

docker------docker入门
🎈个人主页:靓仔很忙i 💻B 站主页:👉B站👈 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:Linux 🤝希望本文对您有所裨益,如有不足之处&#…...

终极数据传输隐秘通道
SOCKS5代理作为网络请求中介的高级形态,提供了一种方法,通过它,数据包在传达其最终目的地前,首先经过一个第三方服务器。这种代理的先进之处在于其对各种协议的支持,包括HTTP、FTP和SMTP,以及它的认证机制&…...

Qt中的事件与事件处理
Qt框架中的事件处理机制是其GUI编程的核心部分,它确保了用户与应用程序之间的交互能够得到正确的响应。以下是对Qt事件处理机制的详细讲解以及提供一些基本示例。 1. 事件与事件处理简介 事件:在Qt中,所有的事件都是从QEvent基类派生出来的&…...

中间件漏洞攻防学习总结
前言 面试常问的一些中间件,学习总结一下。以下环境分别使用vulhub和vulfocus复现。 Apache apache 文件上传 (CVE-2017-15715) 描述: Apache(音译为阿帕奇)是世界使用排名第一的Web服务器软件。它可以运行在几乎所有广泛使用的计算机平台上,由于其跨…...

HarmonyOS开发实例:【分布式数据管理】
介绍 本示例展示了在eTS中分布式数据管理的使用,包括KVManager对象实例的创建和KVStore数据流转的使用。 通过设备管理接口[ohos.distributedDeviceManager],实现设备之间的kvStore对象的数据传输交互,该对象拥有以下能力 ; 1、注册和解除注…...

蓝桥杯——运动会
题目 n 个运动员参加一个由 m 项运动组成的运动会,要求每个运动员参加每个项目。每个运动员在每个项目都有一个成绩,成绩越大排名越靠前。每个项目,不同运功员的成绩不会相 同,因此排名不会相同。(但是不同项目可能成绩会相同) 每…...

如何搭建APP分发平台分发平台搭建教程
搭建一个APP分发平台可以帮助开发者更好地分发和管理他们的应用程序。下面是一个简要的教程,介绍如何搭建一个APP分发平台。 1.确定需求和功能:首先,确定你的APP分发平台的需求和功能。考虑以下几个方面: 用户注册和登录ÿ…...

【计算机专业必看】详细说明文件打开模式r,w,a,r+,w+,a+的区别和联系
文章目录 1、联系2、区别r(只读)w(只写)a(追加)r(读写,文件必须存在)w(读写,文件不存在则创建,存在则清空)a(读…...

Db2数据库稳定性解决方案
常见的数据库查询或写入慢,一般有以下情况 1、数据库经常有删除或有大量查询,(导致磁盘碎裂,数据库缓存堆积) 2、数据量大,导致在查询或写入时,由于负载高,导致系统慢 3、业务代码…...

如何用Python编写简单的网络爬虫(页面代码简单分析过程)
一、什么是网络爬虫 在当今信息爆炸的时代,网络上蕴藏着大量宝贵的信息,如何高效地从中获取所需信息成为了一个重要课题。网络爬虫(Web crawler)作为一种自动化工具,可以帮助我们实现这一目标,用于数据分析…...

【随笔】Git 高级篇 -- 最近标签距离查询 git describe(二十一)
💌 所属专栏:【Git】 😀 作 者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! 💖 欢迎大…...

【leetcode面试经典150题】7.买卖股票的最佳时机(C++)
【leetcode面试经典150题】专栏系列将为准备暑期实习生以及秋招的同学们提高在面试时的经典面试算法题的思路和想法。本专栏将以一题多解和精简算法思路为主,题解使用C语言。(若有使用其他语言的同学也可了解题解思路,本质上语法内容一致&…...

个人求职简历(精选8篇)
HR浏览一份简历也就25秒左右,如果你连「好简历」都没有,怎么能找到好工作呢? 如果你不懂得如何在简历上展示自己,或者觉得怎么改简历都不出彩,那请你一定仔细读完。 互联网运营个人简历范文> 男 22 本科 AI简历…...