如何从零开始训练一个语言模型
如何从零开始训练一个语言模型
本文主要三个方面介绍语言模型的训练过程,主要包括:数据集介绍(包含预训练数据和微调数据),数据的预处理,模型训练和微调,但不涉及对齐阶段(RLHF),对齐需要对齐的数据,也需要不同的预处理方式,对齐的目的是构建一个可以与人类价值观保持一致的LLM,减少虚假有害信息的输出。
数据集
Pretrain Data:
预训练数据主要来自从互联网上收集的文本数据,token的规模大概在trillion级别,整体质量偏低。
SFT Data:
SFT(Supervised Fine-Tuning)数据一般由指令,输入,响应组成,指令和输入一起组成prompt,作为模型的输入,响应作为标签。这类数据对质量要求较高,一般由人工构造,也可由GPT4生成。
预处理
分词Tokenizer:把文本序列转为为token序列。
Pretrain Process:
预训练是通过自监督(SSL)的方式训练,也就是预测下个词(token),数据处理方式如下:
def __getitem__(self, index: int):sample = self.data[index]X=np.array(sample[:-1]).astype(np.int64)Y=np.array(sample[1:]).astype(np.int64)return torch.from_numpy(X),torch.from_numpy(Y)
例如:文本分词后:sample = [1, 2, 3, 4, 5, 6]
- x : 1, 2, 3, 4, 5
- y : 2, 3, 4, 5, 6
SFT Process:
SFT(Supervised Fine-Tuning)阶段喂给模型的示例遵循(prompt、response)的格式,prompt包含:指令+输入,也称为指令数据,数据处理方式如下:
- 拼接指令和输入
# 拼接指令和输入字符
q_lst, a_lst = [],[]
for per in data:q=per['instruction']i=per['input']a=per['output']q=q+iq_lst.append(q)a_lst.append(a)
df=pd.DataFrame(columns=['prompt','answer'])
df['prompt']=q_lst
df['answer']=a_lst
- 拼接提示和响应,并添加分割符,同时生成掩码,掩码的作用是在计算loss时屏蔽prompt部分。
def __getitem__(self, index: int):sample = self.df.iloc[index]# 分词tokenizerprompt = self.tokenizer.encode(sample['prompt'],add_special_tokens=False)answer = self.tokenizer.encode(sample['answer'],add_special_tokens=False)# 截断最大长度if len(prompt) > self.prompt_max_len:prompt = prompt[:self.prompt_max_len-2]if len(answer) > self.answer_max_len:answer = answer[:self.answer_max_len-2]# 拼接提示和响应,同时添加特殊token,标识提示和响应结束inputs = prompt+[self.bos]+answer+[self.eos]# 掩码长度=提示长度prompt_length = inputs.index(self.bos)mask_position = prompt_length - 1# 填充至最大长度pad_len = self.max_length - len(inputs)inputs = inputs + [self.pad] * pad_lenif pad_len==0:# 屏蔽提示和填充位置loss_mask = [0]*prompt_length+[1]*(len(inputs[mask_position+1:]))else:loss_mask = [0]*prompt_length+[1]*(len(inputs[mask_position+1:-pad_len])) + [0]*pad_leninputs = np.array(inputs)X=np.array(inputs[:-1]).astype(np.int64)Y=np.array(inputs[1:]).astype(np.int64)loss_mask=np.array(loss_mask[:-1])return torch.from_numpy(X),torch.from_numpy(Y),torch.from_numpy(loss_mask)
例如:bos : 8, eos : 16, pad : 0,max_length = 16
inputs = prompt + [bos] + answer + [eos] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
-
pad_len = 0:
-
prompt = [1, 2, 3, 4, 5, 6, 7]
-
answer = [9, 10, 11, 12, 13, 14, 15]
-
inputs = prompt + [bos] + answer + [eos] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
- y = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- mask = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]
-
pad_len > 0:
-
prompt = [1, 2, 3, 4, 5, 6, 7]
-
answer = [9, 10, 11, 12, 13]
-
inputs = prompt + [bos] + answer + [eos] + [pad]*2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 0, 0]
- x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 0, 0]
- y = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 0, 0]
- mask = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]
预训练阶段
预训练阶段采用标准的语言模型建模来最大化目标函数:
L p r e t r a i n ( X ) = ∑ i l o g P ( x i ∣ x i − k , . . . , x i − 1 ; Θ ) L_{pretrain}(\mathcal{X}) = \sum_i logP(x_i|x_{i-k},...,x_{i-1};\mathcal{\Theta}) Lpretrain(X)=i∑logP(xi∣xi−k,...,xi−1;Θ)
-
x = x 1 , . . . , x n \mathcal{x} = {x_1, ..., x_n} x=x1,...,xn :语料
-
k k k : 上下文长度
-
P P P : 条件概率由参数为 Θ \Theta Θ的神经网络模型建模
神经网络模型(包含多个transformer模块),模型输入经过分词后(tokenzier)后的token序列,首先经过嵌入层,然后经过transformer_block,最后经过输出层输出token概率分布。
h 0 = X W e + W p h_0 = XW_e + W_p h0=XWe+Wp
h l = t r a n s f o r m e r b l o c k ( h l − 1 ) , ∀ i ∈ [ 1 , n ] h_l = transformer_{block}(h_{l-1}), \forall i \in [1,n] hl=transformerblock(hl−1),∀i∈[1,n]
P ( u ) = s o f t m a x ( h n W e T ) P(u) = softmax(h_nW_e^T) P(u)=softmax(hnWeT)
- W e W_e We : 嵌入矩阵
- W p W_p Wp : 位置嵌入矩阵
微调阶段
微调阶段的数据前面已经提过,由3部分组成: X = { X i n s t r u c t i o n , X i n p u t , X a n s w e r } \mathcal{X} = \{X_{instruction} , X_{input},X_{answer}\} X={Xinstruction,Xinput,Xanswer}
经过预处理后: X = X i n s t r u c t i o n + X i n p u t + b o s + X a n s w e r + e o s \mathcal{X} = X_{instruction}+X_{input}+bos+X_{answer}+eos X=Xinstruction+Xinput+bos+Xanswer+eos
在微调阶段,模型结构不变,目标改变为:
L s f t ( X a n s w e r ) = ∑ i = l o c a l ( b o s ) l o c a l ( e o s ) l o g P ( x i ∣ x i − k , . . . , x i − 1 ; Θ ) L_{sft}(\mathcal{X_{answer}}) = \sum_{i=local(bos)}^{local(eos)} logP(x_i|x_{i-k},...,x_{i-1};\mathcal{\Theta}) Lsft(Xanswer)=i=local(bos)∑local(eos)logP(xi∣xi−k,...,xi−1;Θ)
在微调阶段只关注answer部分token序列的联合概率分布最大化。
经过SFT(Supervised Fine-Tuning)阶段,通过给模型展示如何正确地响应不同的提示(指令)(例如问答,摘要,翻译等)的示例,模型会学会模仿示例数据中的响应行为,学会问答、翻译、摘要等能力。指令微调优势在于,对于任何特定任务的专用模型,只需要在通用大模型的基础上通过特定任务的指令数据进行微调,就可以解锁LLM在特定任务上的能力,不在需要从头去构建专用的小模型。
相关文章:
如何从零开始训练一个语言模型
如何从零开始训练一个语言模型 #mermaid-svg-gtUlIrFtNPw1oV5a {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-gtUlIrFtNPw1oV5a .error-icon{fill:#552222;}#mermaid-svg-gtUlIrFtNPw1oV5a .error-text{fill:#5522…...
Python 设计一个监督自己的软件1
基本要求:每做一件事,软件就会按照事情权重加相应的分数,总分数也会增加,要可视化页面 使用Python编写的一个简单的日常任务记录和评分系统,包括可视化页面。 首先,我们定义一个任务字典,其中包含各种日常任务及其对应的权重分数…...
商家转账到零钱权限开通操作攻略
商家转账到零钱是什么? 商家转账到零钱是微信商户号里的一个功能,很早以前叫企业付款到零钱。 从2022年5月18日,原“企业付款到零钱”升级为“商家转账到零钱”,已开通商户的功能使用暂不受影响,新开通商户可前往「产…...
【DAC‘ 2022】Kite: A Family of Heterogeneous Interposer Topologies
Kite: A Family of Heterogeneous Interposer Topologies Enabled via Accurate Interconnect Modeling 背景和动机 背景动机 工作内容 KITE 拓扑 实验方法和评估结果 Kite: A Family of Heterogeneous Interposer Topologies Enabled via Accurate Interconnect Modeling 通…...
数据结构—堆
什么是堆 堆是一种特殊的树形结构,其中每个节点都有一个值。堆可以分为两种类型:最大堆和最小堆。在最大堆中,每个节点的值都大于等于其子节点的值;而在最小堆中,每个节点的值都小于等于其子节点的值。这种特性使得堆…...
Kubernetes学习笔记8
Kubernetes集群客户端工具kubectl 我们已经能够部署Kubernetes了,那么我们如何使用Kubernetes集群运行企业的应用程序呢?那么,我们就需要使用命令行工具kubectl。 kubectl就是控制Kubernetes的驾驶舱,它允许你执行所有可能的Kube…...
[渗透利器]在线渗透测试工具箱?测评
前言 hxd更新完了在线工具箱,受邀写一下使用体验以及测评 使用体验 这个工具箱设计的比较轻便,以往用过的工具箱大多都是以离线打包的方式发布,该工具箱,作者自己掏钱自己买服务器,自己买带宽,先生大义。…...
rocketmq和rabbitmq总是分不清?
1. 官方解答 摘自百度搜索: 2. 通俗易懂的回答...
利用Python ARM网关仓储物流AGV小车控制器
在现代智慧物流体系中,高效的信息管理系统是物流中心实现精准跟踪货物、科学管理库存及优化配送路线的关键环节。通过采用ARM架构的工控机或网关,并结合Python的二次开发能力,可以有效集成并强化物流管理系统的数据处理与通信功能,…...
Transformer详解和知识点总结
目录 1. 注意力机制1.1 注意力评分函数1.2 多头注意力(Multi-head self-attention) 2. Layer norm3. 模型结构4. Attention在Transformer中三种形式的应用 论文:https://arxiv.org/abs/1706.03762 李沐B站视频:https://www.bilibi…...
【Ubuntu】update-alternatives 命令详解
1、查看所有候选项 sudo update-alternatives --list java 2、更换候选项 sudo update-alternatives --config java 3、自动选择优先级最高的作为默认项 sudo update-alternatives --auto java 4、删除候选项 sudo update-alternatives --rem…...
数据结构之堆练习题及PriorityQueue深入讲解!
题外话 上午学了一些JavaEE初阶知识,下午继续复习数据结构内容 正题 本篇内容把堆的练习题做一下 第一题 1.下列关键字序列为堆的是:( A ) A: 100,60,70,50,32,65 B: 60,70,65,50,32,100 C: 65,100,70,32,50,60 D: 70,65,100,32,50,60 E: 32,50,100,70,65,60 …...
MySQL——Linux安装包
一、下载安装包 MySQL下载路径: MySQL :: MySQL Downloads //默认下载的企业版MySQL 下载社区版MySQL MySQL :: MySQL Community Downloads 1、源码下载 2、仓库配置 3、二进制安装包 基于官方仓库安装 清华centos 软件仓库: Index of /cen…...
MySQL学习笔记(数据类型, DDL, DML, DQL, DCL)
Learning note 1、前言2、数据类型2.1、数值类型2.2、字符串类型2.3、日期类型 3、DDL总览数据库/表切换数据库查看表内容创建数据库/表删除数据库/表添加字段删除字段表的重命名修改字段名(以及对应的数据类型) 4、DML往字段里写入具体内容修改字段内容…...
Asible管理变量与事实——管理变量(1)
Ansible简介 Ansible支持利用变量来储存值,并在Ansible项目的所有文件中重复使用这些值。这可以简化项目的创建和维护,并减少错误的数量。 通过变量,您可以轻松地在Ansible项目中管理给定环境的动态值。例如,变量可能包含下面这些…...
【微服务】------微服务架构技术栈
目前微服务早已火遍大江南北,对于开发来说,我们时刻关注着技术的迭代更新,而项目采用什么技术栈选型落地是开发、产品都需要关注的事情,该篇博客主要分享一些目前普遍公司都在用的技术栈,快来分享一下你当前所在用的技…...
【SCI绘图】【小提琴系列1 python】绘制按分类变量分组的垂直小提琴图
SCI,CCF,EI及核心期刊绘图宝典,爆款持续更新,助力科研! 本期分享: 【SCI绘图】【小提琴系列1 python】绘制按分类变量分组的垂直小提琴图,文末附完整代码 小提琴图是一种常用的数据可视化工具…...
docker------docker入门
🎈个人主页:靓仔很忙i 💻B 站主页:👉B站👈 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:Linux 🤝希望本文对您有所裨益,如有不足之处&#…...
终极数据传输隐秘通道
SOCKS5代理作为网络请求中介的高级形态,提供了一种方法,通过它,数据包在传达其最终目的地前,首先经过一个第三方服务器。这种代理的先进之处在于其对各种协议的支持,包括HTTP、FTP和SMTP,以及它的认证机制&…...
Qt中的事件与事件处理
Qt框架中的事件处理机制是其GUI编程的核心部分,它确保了用户与应用程序之间的交互能够得到正确的响应。以下是对Qt事件处理机制的详细讲解以及提供一些基本示例。 1. 事件与事件处理简介 事件:在Qt中,所有的事件都是从QEvent基类派生出来的&…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...
基于鸿蒙(HarmonyOS5)的打车小程序
1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...
热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁
赛门铁克威胁猎手团队最新报告披露,数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据,严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能,但SEMR…...
图解JavaScript原型:原型链及其分析 | JavaScript图解
忽略该图的细节(如内存地址值没有用二进制) 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么:保存在堆中一块区域,同时在栈中有一块区域保存其在堆中的地址(也就是我们通常说的该变量指向谁&…...
