当前位置: 首页 > news >正文

深度剖析C语言预处理

致前行的人:

人生像攀登一座山,而找寻出路,却是一种学习的过程,我们应当在这过程中,学习稳定冷静,学习如何从慌乱中找到生机。

 

目录

1.程序翻译过程:

2.字符串宏常量

3.用宏定义充当注释符号

4.用define宏定义表达式

5.宏定义中的空格 

6.宏定义的位置

7.#undef

8.条件编译

8.1条件编译如何使用?

8.2为何要有条件编译?

8.3条件编译都在哪些地方用?

9.文件包含

10.#error 预处理

12.#line 预处理

13.#pragma 预处理

14.#运算符

15.##预算符 


1.程序翻译过程:

程序从文本文件到可执行二进制程序需要经历以下四个阶段:

预处理-E :头文件展开,去注释,宏替换,条件编译
编译-S : 将干净的C语言,编译成为汇编语言
汇编-c :将汇编翻译成为目标二进制文件
链接  :将目标二进制文件与相关库链接,形成可执行程序

本篇重点讲解第一个预处理阶段的所有细节!

2.字符串宏常量

1.字符串没有带双引号,直接报错:

#include<stdio.h>
//#define PATH /user/bin err
#define PATH "/user/bin"
int main()
{printf("%s\n", PATH);return 0;
}

结论:宏定义代表字符串的时候,一定要带上双引号

2.可以用\续行

#include<stdio.h>
#define PATH "/user/bin/\
test.c"
int main()
{printf("%s\n", PATH);return 0;
}

3.用宏定义充当注释符号

//当前,我们用BSC充当C++风格的注释
#define BSC  //
int main()
{BSC printf("hello world\n");return 0;
}

在vs上编译运行,发现是直接报错的: 

切换平台在Linux上做测试:

直接编译运行:发现也是错误的

下面不让程序直接编译运行,而是让程序在预处理完之后就停下来

测试发现并没有报错:

打开预处理完之后生成的文件test.i:

倘若,先执行宏替换,那么先得到的代码应该是

int main()  
{ //将BSC替换成为‘//’// printf("hello world\n");  return 0;  
}


再执行去注释,那么代码最终的样子,应该是

int main()  
{ return 0;    //printf被注释掉
}

并且,最终运行的时候,应该没有输出
但实际上,并非如此
实际上,是先执行去注释,在进行宏替换
先去掉宏后面的//,因为是注释
#define BSC  // //最终宏变成了#define BSC

int main()
{BSC printf("hello world\n"); //因为BSC是空,所以在进行替换之后,就是printf("hello world\n");return 0;
}

结论:预处理期间:先执行去注释,在进行宏替换

4.用define宏定义表达式

1.用#define定义单条语句:

#define SUM(x) (x)+(x)
int main()
{printf("%d\n", SUM(10));return 0;
}

运行截图: 

#define定义的表达式是在预处理阶段完成替换的

2.用#define定义多条语句:

//该宏最大的特征是,替换的不是单个变量/符号/表达式,而是多行代码
#define INIT_VALUE(a,b)\a = 0;\b = 0;
int main()
{int flag = 0;scanf("%d", &flag);int a = 100;int b = 200;printf("before: %d, %d\n", a, b);if (flag)INIT_VALUE(a, b);elseprintf("error!\n");printf("after: %d, %d\n", a, b);return 0;
}

编译运行:直接报错

因为#define是在预处理阶段完成替换的,下面在Linux平台下观察一下预处理完成之后生成的test.i文件:

通过观察上图可以发现,完成宏替换之后if后面跟了多条语句,因为if是没有带{}的,所以只能跟一条语句,当有多条语句时,else就匹配失败,出现报错

解决方法1

在编写的时候带上{}:

#define INIT_VALUE(a,b)\a = 0;\b = 0;
int main()
{int flag = 0;scanf("%d", &flag);int a = 100;int b = 200;printf("before: %d, %d\n", a, b);if (flag){INIT_VALUE(a, b);}elseprintf("error!\n");printf("after: %d, %d\n", a, b);return 0;
}

运行成功:

 解决方法2

在编写宏的时候,用do-while-0的结构定义多条语句:

#define INIT_VALUE(a,b)\
do\
{\a = 0; \b = 0;\
}while(0)
int main()
{int flag = 0;scanf("%d", &flag);int a = 100;int b = 200;printf("before: %d, %d\n", a, b);if (flag)INIT_VALUE(a, b);elseprintf("error!\n");printf("after: %d, %d\n", a, b);return 0;
}

运行截图:

5.宏定义中的空格 

#define INC(a)		a++ //定义时能带空格
int main()
{int i = 0;INC	(i); //使用可以带空格,但是严重不推荐(不要处处显得自己不一样哦)printf("%d\n", i);
}

运行截图:

6.宏定义的位置

1.宏只能在main上面定义吗?

答案是否定的,如图所示:可以在不同文件中定义,在使用的时候只需要包含头文件即可

 2. 在一个源文件内,宏的有效范围是什么?

答案是:在一个源文件内,宏可以在任意的位置定义,包括函数体内部,全局和局部中,但是从定义出往下有效,往上是无效的

如图所示:test.c

#define M 10
int main()
{printf("%d, %d\n", M, N);
#define N 100printf("%d, %d\n", M, N);return 0;
}

test.i:

int main()
{printf("%d, %d\n", 10, N);printf("%d, %d\n", 10, 100);return 0;
}

7.#undef

#undef的作用:

test.c:

#define M 10
int main()
{
#define N 100printf("%d, %d\n", M, N);printf("%d, %d\n", M, N);printf("%d, %d\n", M, N);#undef M //取消M
#undef N //取消Nprintf("%d, %d\n", M, N);printf("%d, %d\n", M, N);printf("%d, %d\n", M, N);return 0;
}

test.i:

int main()
{printf("%d, %d\n", 10, 100);printf("%d, %d\n", 10, 100);printf("%d, %d\n", 10, 100);printf("%d, %d\n", M, N);printf("%d, %d\n", M, N);printf("%d, %d\n", M, N);return 0;
}

结论:undef是取消宏的意思,可以用来限定宏的有效范围。

8.条件编译

8.1条件编译如何使用?

#ifdef - #else - #endif

int main()
{
#ifdef PRINTprintf("hello world!\n");printf("hello byte!\n");
#elseprintf("Non Message!\n");
#endifreturn 0;
}

当前,PRINT并没有被定义,所以输出#else部分的内容

运行截图:

#ifndef - #else - #endif

int main()
{
#ifndef DEBUGprintf("hello debug\n");
#elseprintf("hello release\n");
#endifreturn 0;
}

当前,DEBUG并没有被定义,所以输出#ifndef部分的内容

运行截图:

同样上述代码,使用#if可以有很多中写法,下面是写法大全 

1.单个条件的情况:

#define DEBUG 1
int main()
{
#if DEBUGprintf("hello bit\n");
#endifreturn 0;
}

2.带else的情况:

//报错
//#define DEBUG
//定义了,为假
#define DEBUG 0
//定义了,为真
//#define DEBUG 1
int main()
{
#if DEBUGprintf("hello world\n");
#elseprintf("hello C\n");
#endifreturn 0;
}

3.多条件的情况:

//#define DEBUG 0
//#define DEBUG 1
//#define DEBUG 2
#define DEBUG 3
int main()
{
#if DEBUG==0printf("hello C 0\n");
#elif DEBUG==1printf("hello C 1\n");
#elif DEBUG==2printf("hello C 2\n");
#elseprintf("hello else\n");
#endifreturn 0;
}

4.#if模拟#ifdef:

#define DEBUG
int main()
{
#if defined(DEBUG)printf("hello debug\n");
#elseprintf("hello release\n");
#endifreturn 0;
}

5.#if模拟#ifndef:

int main()
{
#if !defined(DEBUG)printf("hello debug\n");
#elseprintf("hello release\n");
#endifreturn 0;
}

6.其它使用方法:

#define C
#define CPP
int main()
{
#if defined(C) && defined(CPP)printf("hello c && cpp\n");
#elseprintf("hello other\n");
#endifreturn 0;
}
#define C
//#define CPP
int main()
{
#if defined(C) || defined(CPP)printf("hello c&&cpp\n");
#elseprintf("hello other\n");
#endifreturn 0;
}
#define C
#define CPP
int main()
{
#if !(defined(C) || defined(CPP))printf("hello c&&cpp\n");
#elseprintf("hello other\n");
#endifreturn 0;
}
#define C
#define CPP
int main()
{
#if defined(C)
#if defined (CPP)printf("hello CPP\n");
#endifprintf("hello C\n");
#elseprintf("hello other\n");
#endifreturn 0;
}

8.2为何要有条件编译?

本质认识:条件编译,其实就是编译器根据实际情况,对代码进行裁剪。而这里“实际情况”,取决于运行平台,代码本身的业务逻辑等。
可以认为有两个好处:
1. 可以只保留当前最需要的代码逻辑,其他去掉。可以减少生成的代码大小
2. 可以写出跨平台的代码,让一个具体的业务,在不同平台编译的时候,可以有同样的表现

8.3条件编译都在哪些地方用?

举一个例子吧
我们经常听说过,某某版代码是完全版/精简版,某某版代码是商用版/校园版,某某软件是基础版/扩展版等。其实这些软件在公司内部都是项目,而项目本质是有多个源文件构成的。所以,所谓的不同版本,本质其实就是功能的有无,在技术层面上,公司为了好维护,可以维护多种版本,当然,也可以使用条件编译,你想用哪个版本,就使用哪种条件
进行裁剪就行。
著名的Linux内核,功能上,其实也是使用条件编译进行功能裁剪的,来满足不同平台的软件。

9.文件包含

1. 为何所有头文件,都推荐写入下面代码?本质是为什么?

#ifndef XXX
#define XXX//TODO#endif

2. #include究竟干了什么?

形成的.i文件,发现文件大小比我们实际的代码要大得多

结论:#include本质是把头文件中相关内容,直接拷贝至源文件中!

那么,在多文件包含中,有没有可能存在头文件被重复包含,乃至被重复拷贝的问题呢?

#ifndef _TEST_H_
#define _TEST_H_            //注意,这里没有包含<stdio.h>防止信息太多干扰我们
void show();              //任意一个函数声明
#endif

故意包含两次: 

#include"test.h"    
#include"test.h"
int main()
{return 0;
}

去掉条件编译:

void show();          //内容被拷贝第一次
# 2 "test.c" 2
# 1 "test.h" 1
void show();          //内容被拷贝第二次
# 3 "test.c" 2
int main()
{return 0;
}

结论:所有头文件都必须带上条件编译,防止被重复包含!

那么,重复包含一定报错吗??不会!
重复包含,会引起多次拷贝,主要会影响编译效率!

10.#error 预处理

//#define __cplusplus
int main()
{
#ifndef __cplusplus
#error 不是C++
#endifreturn 0;
}

结论:核心作用是可以进行自定义编译报错。

12.#line 预处理

本质其实是可以定制化你的文件名称和代码行号,很少使用

#include <stdio.h>
int main()
{printf("%s, %d\n", __FILE__, __LINE__); //C预定义符号,代表当前文件名和代码行号
#line 60 "hehe.h"              //定制化完成printf("%s, %d\n", __FILE__, __LINE__);return 0;
}

运行截图:

13.#pragma 预处理

#pragma message()作用:可以用来进行对代码中特定的符号(比如其他宏定义)进行是否存在进行编译时消息提醒

#include <stdio.h>
#define M 10
int main()
{
#ifdef M
#pragma message("M宏已经被定义了")
#endifreturn 0;
}

运行截图:

14.#运算符

首先补充,临近字符串自动连接特性:

int main()
{printf("hello"" world""\n");const char* msg = "hello""bit""\n";printf(msg);return 0;
}

运行截图:

#:可以将数字转换成字符串:

#include<string.h>
#define STR(s) #s
int main()
{char buf[64] = { 0 };strcpy(buf, STR(1234));printf("%s\n", buf);return 0;
}

运行截图:

15.##预算符 

##的作用:将##相连的两个符号,连接成为一个符号

#define CONT(x,n) (x##e##n)
int main()
{printf("%lf\n", CONT(2, 5));计算浮点数科学计数法,相当于2 * (10^5)return 0;
}

运行截图:

相关文章:

深度剖析C语言预处理

致前行的人&#xff1a; 人生像攀登一座山&#xff0c;而找寻出路&#xff0c;却是一种学习的过程&#xff0c;我们应当在这过程中&#xff0c;学习稳定冷静&#xff0c;学习如何从慌乱中找到生机。 目录 1.程序翻译过程&#xff1a; 2.字符串宏常量 3.用宏定义充当注释符号 4…...

【WPF 值转换器】ValueConverter 进阶用法

【WPF 值转换器】ValueConverter 进阶用法介绍基类实现子类实现效果介绍 值转换器在WPF开发中是非常常见的&#xff0c;当然不仅仅是在WPF开发中。值转换器可以帮助我们很轻松地实现&#xff0c;界面数据展示的问题&#xff0c;如&#xff1a;模块隐藏显示、编码数据展示为可读…...

Vue2的基本使用

一、vue的基本使用 第一步 引入vue.js文件 <script src"https://cdn.staticfile.org/vue/2.7.0/vue.min.js"></script> 或者<script src"./js/vue.js"></script> 第二步 在body中设置一个挂载点 {{msg}} <div id"app…...

【云原生kubernetes】k8s数据存储之Volume使用详解

目录 一、什么是Volume 二、k8s中的Volume 三、k8s中常见的Volume类型 四、Volume 之 EmptyDir 4.1 EmptyDir 特点 4.2 EmptyDir 实现文件共享 4.2.1 关于busybox 4.3 操作步骤 4.3.1 创建配置模板文件yaml 4.3.2 创建Pod 4.3.3 访问nginx使其产生访问日志 4.3.4 …...

SerDes---CDR技术

1、为什么需要CDR 时钟数据恢复主要完成两个工作&#xff0c;一个是时钟恢复&#xff0c;一个是数据重定时&#xff0c;也就是数据的恢复。时钟恢复主要是从接收到的 NRZ&#xff08;非归零码&#xff09;码中将嵌入在数据中的时钟信息提取出来。 2、CDR种类 PLL-Based CDROve…...

如何实现在on ethernetPacket中自动回复NDP response消息

对于IPv4协议来说,如果主机想通过目标ipv4地址发送以太网数据帧给目的主机,需要在数据链路层填充目的mac地址。根据目标ipv4地址查找目标mac地址,这是ARP协议的工作原理 对于IPv6协议来说,根据目标ipv6地址查找目标mac地址,它使用的不是ARP协议,而是邻居发现NDP(Neighb…...

CSS清楚浮动

先看看关于浮动的一些性质 浮动使元素脱离文档流 浮动元素可以设置宽高&#xff0c;在CSS中&#xff0c;任何元素都可以浮动&#xff0c;浮动元素会生成一个块级框&#xff0c;而不论其本身是何种元素。 如果没有给浮动元素指定高度&#xff0c;&#xff0c;那么它会以内容的…...

HTTPS详解(原理、中间人攻击、CA流程)

摘要我们访问浏览器也经常可以看到https开头的网址&#xff0c;那么什么是https&#xff0c;什么是ca证书&#xff0c;认证流程怎样&#xff1f;这里一一介绍。原理https就是httpssl&#xff0c;即用http协议传输数据&#xff0c;数据用ssl/tls协议加密解密。具体流程如下图&am…...

EventLoop机制

JavaScript 是单线程的语言 JavaScript 是一门单线程执行的编程语言。也就是说&#xff0c;同一时间只能做一件事情。 单线程执行任务队列的问题&#xff1a; 如果前一个任务非常耗时&#xff0c;则后续的任务就不得不一直等待&#xff0c;从而导致程序假死的问题。 同步任…...

倒立摆建模

前言 系统由一辆具有动力的小车和安装在小车上的倒立摆组成&#xff0c;系统是不稳定&#xff0c;我们需要通过控制移动小车使得倒立摆保持平衡。 具体地&#xff0c;考虑二维情形如下图&#xff0c;控制力为水平力FFF&#xff0c;输出为角度θ\thetaθ以及小车的位置xxx。 力…...

SpringSecurity支持WebAuthn认证

WebAuthn是无密码身份验证技术&#xff0c;解决了密码泄露的风险&#xff0c;主流的浏览器都支持。有很多开源的类库实现了WebAuthn规范&#xff0c;Java下流行的类库有&#xff1a;webauthn4jjava-webauthn-serververtx-authSpring Security官方暂时未支持WebAuthn&#xff0c…...

深度学习技巧应用3-神经网络中的超参数搜索

大家好&#xff0c;我是微学AI&#xff0c;今天给大家带来深度学习技巧应用3-神经网络中的超参数搜索。 在深度学习任务中&#xff0c;一个算法模型的性能往往受到很多超参数的影响。超参数是指在模型训练之前需要我们手动设定的参数&#xff0c;例如&#xff1a;学习率、正则…...

【信号量机制及应用】

水善利万物而不争&#xff0c;处众人之所恶&#xff0c;故几于道&#x1f4a6; 目录 一、信号量机制 二、信号量的应用 >利用信号量实现进程互斥   >利用信号量实现前驱关系   >利用记录型信号量实现同步 三、例题 四、参考 一、信号量机制 信号量是操作系统提…...

围棋高手郭广昌的“假眼”棋局

&#xff08;图片来源于网络&#xff0c;侵删&#xff09;文丨熔财经作者|易不二2022年&#xff0c;在复星深陷债务压顶和变卖资产漩涡的而立之年&#xff0c;“消失”已久的郭广昌&#xff0c;在质疑与非议声中回国稳定军心&#xff0c;强调复星将在未来的五到十年迎来一个全新…...

学成教育-统一异常处理实现

一、统一异常处理实现 统一在base基础工程实现统一异常处理&#xff0c;各模块依赖了base基础工程都 可以使用。 首先在base基础工程添加需要依赖的包&#xff1a; <dependency><groupId>org.springframework</groupId><artifactId>spring-web</…...

JNI内通过参数形式从C/C++中传递string类型数据至Java层

目录 0 前言 1 string类型参数形式传值 2 测试和结果 0 前言 类似之前我写过的两篇文章&#xff1a;一篇介绍了在JNI中基础类型int的传值方式&#xff1b;一篇详细梳理了在JNI层中多维数组的多种传值方式。 JNI内两种方式从C/C中传递一维、二维、三维数组数据至Java层详细…...

自动化测试——执行javaScript脚本

文章目录一、点击元素(对应的click())二、input标签对应的值&#xff08;对应的send_keys()&#xff09;修改时间控件的属性值&#xff1a;三、元素的文本属性四、js脚本滚动操作一、点击元素(对应的click()) 使用场景&#xff1a;当使用显性等待不能解决问题时 代码中实现点击…...

常用十种算法滤波

十种算法滤波1. 限幅滤波法&#xff08;又称程序判断滤波法&#xff09;2. 中位值滤波法3. 算术平均滤波法4. 递推平均滤波法&#xff08;又称滑动平均滤波法&#xff09;5. 中位值平均滤波法&#xff08;又称防脉冲干扰平均滤波法&#xff09;6. 限幅平均滤波法7. 一阶滞后滤波…...

IO多路复用

一、概述 IO多路复用&#xff1a;进程同时检查多个文件描述符&#xff0c;以找出他们中的任何一个是否可执行IO操作。 核心&#xff1a;同时检查多个文件描述符&#xff0c;看他们是否准备好了执行IO操作。文件描述符就绪状态的转化是通过一些IO事件来触发。 二、水平触发和…...

Python中的错误是什么,Python中有哪些错误

7.1 错误(errors) 由于Python代码通常是人类编写的&#xff0c;那么无论代码是在解释之前还是运行之后&#xff0c;或多或少总会出现一些问题。 在Python代码解释时遇到的问题称为错误&#xff0c;通常是语法和缩进问题导致的&#xff0c;这些错误会导致代码无法通过解释器的解…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号&#xff0c;此时&#xff0c;我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统

Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 &#xff09; 缓存工作原理分析 在了解了本地缓存和远程缓存之后&#xff0c;我们来探究缓存是如何工作的。以计算文件的哈希串为例&#xff0c;若后续运行任务时文件哈希串未变&#xff0c;系统会直接使用对应的输出和制品文件。 2 …...

Netty自定义协议解析

目录 自定义协议设计 实现消息解码器 实现消息编码器 自定义消息对象 配置ChannelPipeline Netty提供了强大的编解码器抽象基类,这些基类能够帮助开发者快速实现自定义协议的解析。 自定义协议设计 在实现自定义协议解析之前,需要明确协议的具体格式。例如,一个简单的…...

【Linux】使用1Panel 面板让服务器定时自动执行任务

服务器就是一台24小时开机的主机&#xff0c;相比自己家中不定时开关机的主机更适合完成定时任务&#xff0c;例如下载资源、备份上传&#xff0c;或者登录某个网站执行一些操作&#xff0c;只需要编写 脚本&#xff0c;然后让服务器定时来执行这个脚本就可以。 有很多方法实现…...

RocketMQ 客户端负载均衡机制详解及最佳实践

延伸阅读&#xff1a;&#x1f50d;「RocketMQ 中文社区」 持续更新源码解析/最佳实践&#xff0c;提供 RocketMQ 专家 AI 答疑服务 前言 本文介绍 RocketMQ 负载均衡机制&#xff0c;主要涉及负载均衡发生的时机、客户端负载均衡对消费的影响&#xff08;消息堆积/消费毛刺等…...