【MATLAB源码-第180期】基于matlab的PTS,SLM,CPFilter三种降低OFDM系统的PAPR仿真。
操作环境:
MATLAB 2022a
1、算法描述
1. 限幅和滤波(Clipping and Filtering)
原理简介
限幅和滤波是一种基础且直观的方法,用于降低OFDM信号的PAPR。在限幅阶段,信号的幅度在达到设定阈值时会被削减,以此减少峰值功率。此操作虽简单,但会引入非线性失真,因此需要通过滤波过程来尽量恢复信号的质量,减轻失真效应。
实现方法
- 限幅:通过设定一个阈值,当信号幅度超过这个阈值时,就将其强行限制在这个值上。
- 滤波:应用一个带通滤波器,以减少限幅过程中引入的高频成分,从而减轻由于限幅造成的信号失真。
优缺点分析
- 优点:实现简单,适用于实时处理和硬件实现。成本低,易于部署。
- 缺点:会引入非线性失真,可能影响系统的误码率。滤波过程可能会导致信号带宽的扩展,影响频谱效率。
2. 部分传输序列(Partial Transmit Sequences, PTS)
原理简介
PTS技术通过将原始OFDM信号分割为若干个互不相关的子块,并对每个子块进行独立的相位调整,最后将这些子块重新组合,从而找到一种组合方式,使得整个OFDM信号的PAPR达到最小。
实现方法
- 分块:将OFDM信号分为多个子块。
- 相位调整和优化:对每个子块独立地选择一个最佳的相位因子,以使得重组后的信号PAPR最小。
- 重组:将经过相位优化的子块合并成一个信号。
优缺点分析
- 优点:不引入额外的失真,相对于限幅和滤波技术,能够在不牺牲信号质量的情况下有效降低PAPR。
- 缺点:计算复杂度高,特别是当子块数量增多时,优化过程需要的计算量大大增加,这可能不适合实时处理要求。
3. 选择映射(Selected Mapping, SLM)
原理简介
SLM技术通过生成多个具有相同数据信息但是相位序列不同的OFDM信号副本,然后从这些副本中选择一个具有最低PAPR的信号进行发送。
实现方法
- 生成副本:通过改变OFDM信号的相位序列,生成多个信号副本。
- 选择最佳信号:计算每个信号副本的PAPR,并选择PAPR最小的信号进行传输。
优缺点分析
- 优点:与PTS
相比,SLM技术在减少PAPR的同时,计算复杂度较低,更适合实时处理和硬件实现。 缺点:SLM需要在发送端和接收端之间传递额外的边带信息,以指示哪一个相位序列被选用于解调。这增加了系统的信令开销和复杂度。
综合分析与应用场景 这三种技术各有千秋,它们的选择和应用需基于特定的系统要求和约束来考虑。例如,在对实时性要求高、硬件资源受限的场景下,限幅和滤波因其简单和成本效益高而更受欢迎。然而,如果系统对信号质量和性能有更高要求,尤其是在误码率和频谱效率方面,PTS和SLM技术因其能够在不引入额外失真的前提下减少PAPR,因而更为合适。
具体来说,PTS适用于那些可以容忍一定的计算复杂度,同时需要高信号质量和低PAPR的应用。这包括高速数据传输和高质量视频传输等场景,其中信号的完整性至关重要。相反,SLM技术因其较低的计算复杂度,在需要快速处理且对信号传输效率有高要求的场景下更为适合,如移动通信和无线网络等领域。
进一步的研究和开发正在不断推进这些技术的边界。例如,通过算法优化、硬件加速、以及结合其他信号处理技术,旨在进一步减少计算复杂度和提高系统性能。同时,新兴的研究如深度学习和机器学习在PAPR抑制领域的应用,展示了通过智能算法自动优化相位序列和信号处理参数,从而实现更高效和智能的PAPR抑制方法。
总结而言,限幅和滤波、PTS和SLM技术各具特色,它们为解决OFDM系统中的PAPR问题提供了不同的解决方案。在实际应用中,应综合考虑系统的实时处理能力、硬件资源限制、性能优化目标等因素,选择最适合的技术。随着通信技术的不断进步和发展,对这些技术的深入研究和优化将更加重要,以满足未来通信系统对高效率、高性能的需求。
2、仿真结果演示

3、关键代码展示
略
4、MATLAB 源码获取
V
点击下方名片
相关文章:
【MATLAB源码-第180期】基于matlab的PTS,SLM,CPFilter三种降低OFDM系统的PAPR仿真。
操作环境: MATLAB 2022a 1、算法描述 1. 限幅和滤波(Clipping and Filtering) 原理简介 限幅和滤波是一种基础且直观的方法,用于降低OFDM信号的PAPR。在限幅阶段,信号的幅度在达到设定阈值时会被削减,…...
学透Spring Boot — 004. Spring Boot Starter机制和自动配置机制
如果你项目中一直用的是 Spring Boot,那么恭喜你没有经历过用 Spring 手动集成其它框架的痛苦。 都说 Spring Boot 大大简化了 Spring 框架开发 Web 应用的难度,这里我们通过配置 Hibernate 的两种方式来深刻体会这一点: 使用 Spring 框架集…...
面试算法-170-二叉树的最大深度
题目 给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:3 解 class Solution {public int maxDepth(TreeNod…...
【数据结构】哈希
文章目录 1. 哈希概念2. 哈希冲突3. 哈希函数4. 哈希冲突解决4.1 闭散列4.2 开散列 unordered 系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。 1. 哈希概念 顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系ÿ…...
Kubernetes(k8s)监控与报警(qq邮箱+钉钉):Prometheus + Grafana + Alertmanager(超详细)
Kubernetes(k8s)监控与报警(qq邮箱钉钉):Prometheus Grafana Alertmanager(超详细) 1、部署环境2、基本概念简介2.1、Prometheus简介2.2、Grafana简介2.3、Alertmanager简介2.4、Prometheus …...
STM32-04基于HAL库(CubeMX+MDK+Proteus)中断案例(按键中断扫描)
文章目录 一、功能需求分析二、Proteus绘制电路原理图三、STMCubeMX 配置引脚及模式,生成代码四、MDK打开生成项目,编写HAL库的按键检测代码五、运行仿真程序,调试代码 一、功能需求分析 在完成GPIO输入输出案例之后,开始新的功能…...
第十五篇:Mybatis
文章目录 一、什么是MyBatis二、Mybatis入门案例三、配置SQL提示四、数据库连接池四、lombok五、mybatis基础操作5.1 根据id删除5.2 预编译SQL5.3 新增员工5.4 更新员工5.5 查询员工(用于页面回显)5.6 条件查询 七、XML映射文件八、动态SQL8.1 if语句8.2…...
【MacBook系统homebrew镜像记录】
安装 使用Homebrew 国内源安装脚本,贼方便: /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)"切换至清华大学镜像源: 命令合并: 分别切换了 brew.git、 homebrew-core.git、 homebrew-…...
深拷贝总结
JSON.parse(JSON.stringify(obj)) 这行代码的运行过程,就是利用 JSON.stringify 将js对象序列化(JSON字符串),再使用JSON.parse来反序列化(还原)js对象;序列化的作用是存储和传输。(…...
RabbitMQ在云原生环境中部署和应用实践
一、RabbitMQ和云原生技术的关系 RabbitMQ是一种开源的、实现了先进的消息队列协议(AMQP)的消息队列软件。而云原生技术就是为在公共云、私有云以及其他各种云环境提供应用的一种方法。RabbitMQ和云原生技术在分布式系统和微服务架构中都起到了关键作用…...
flask 后端 + 微信小程序和网页两种前端:调用硬件(相机和录音)和上传至服务器
选择 flask 作为后端,因为后续还需要深度学习模型,python 语言最适配;而 flask 框架轻、学习成本低,所以选 flask 作为后端框架。 微信小程序封装了调用手机硬件的 api,通过它来调用手机的摄像头、录音机,…...
蓝桥杯嵌入式(G431)备赛笔记——ADC+LCD
目录 题目要求(真题): cubeMX配置: 小试牛刀: Keil代码: 效果演示: 题目要求(真题): 使用第十一届第二场真题,练习ADC波部分的代码 cubeMX配…...
最近公共祖先(LCA)
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先。 输入格式 第一行包含三个正整数 N,M,S,分别表示树的结点个数、询问的个数和树根结点的序号。 接下来 N−1 行每行包含两个正整数x,y,表示 x 结点和 y 结点之间有一条直接连接的边(数据保证可以…...
ABBYY FineReader15免费电脑OCR图片文字识别软件
产品介绍:ABBYY FineReader 15 OCR图片文字识别软件 ABBYY FineReader 15是一款光学字符识别(OCR)软件,专门设计用于将扫描的文档、图像和照片中的文本转换成可编辑和可搜索的格式。这款软件利用先进的OCR技术,能够识别…...
2024年第十七届 认证杯 网络挑战赛 (A题)| 保暖纤维的保暖能力 |数学建模完整代码+建模过程全解全析
当大家面临着复杂的数学建模问题时,你是否曾经感到茫然无措?作为2022年美国大学生数学建模比赛的O奖得主,我为大家提供了一套优秀的解题思路,让你轻松应对各种难题。 让我们来看看认证杯 网络挑战赛 (A题)!…...
算法训练营第37天|LeetCode 738.单调递增的数字 968.监控二叉树
LeetCode 738.单调递增的数字 题目链接: LeetCode 738.单调递增的数字 解题思路: 从后向前遍历,当不满足递增条件时,当前位置赋值为9,前一位减一。之后记录不满足位置,将后续全部赋值为9. 代码&#x…...
Vue+el-table 修改表格 单元格横线边框颜色及表格空数据时边框颜色
需求 目前 找到对应的css样式进行修改 修改后 css样式 >>>.el-table th.el-table__cell.is-leaf {border-bottom: 1px solid #444B5F !important;}>>>.el-table td.el-table__cell,.el-table th.el-table__cell.is-leaf {border-bottom: 1px solid #444B5F …...
大恒相机-程序异常退出后显示被占用
心跳时间代表多久向相机发送一次心跳包,如果超时则设备会认为断开了,停止工作并主动释放占用资源。 在相机打开后添加代码: #ifdef _DEBUG//设置心跳超时时间 3sObjFeatureControlPtr->GetIntFeature("GevHeartbeatTimeout")-&…...
头歌-机器学习 第16次实验 EM算法
第1关:极大似然估计 任务描述 本关任务:根据本节课所学知识完成本关所设置的选择题。 相关知识 为了完成本关任务,你需要掌握: 什么是极大似然估计; 极大似然估计的原理; 极大似然估计的计算方法。 什么是极大似然估计 没有接触过或者没有听过”极大似然估计“的同学…...
电脑启动引导的两种方式
电脑启动引导的两种方式 电脑启动引导有两种方式:Legacy 传统模式 和 UEFI 新型模式。 一、Legacy:指 主板的 传统的 BIOS 传输模式引导启动加载操作系统。 1.只支持 MBR 分区表,支持 32位和64位操作系统(如:winXP&…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
BLEU评分:机器翻译质量评估的黄金标准
BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...
