pytorch view、expand、transpose、permute、reshape、repeat、repeat_interleave
非contiguous操作
There are a few operations on Tensors in PyTorch that do not change the contents of a tensor, but change the way the data is organized. These operations include:
narrow(), view(), expand() and transpose() permute()
This is where the concept of contiguous comes in. In the example above, x is contiguous but y is not because its memory layout is different to that of a tensor of same shape made from scratch. Note that the word “contiguous” is a bit misleading because it’s not that the content of the tensor is spread out around disconnected blocks of memory. Here bytes are still allocated in one block of memory but the order of the elements is different!
When you call contiguous(), it actually makes a copy of the tensor such that the order of its elements in memory is the same as if it had been created from scratch with the same data.
transpose()
permute() and tranpose() are similar. transpose() can only swap two dimension. But permute() can swap all the dimensions. For example:
x = torch.rand(16, 32, 3)
y = x.tranpose(0, 2)z = x.permute(2, 1, 0)
permute
Returns a view of the original tensor input with its dimensions permuted.
>>> x = torch.randn(2, 3, 5)
>>> x.size()
torch.Size([2, 3, 5])
>>> torch.permute(x, (2, 0, 1)).size()
torch.Size([5, 2, 3])
expand
More than one element of an expanded tensor may refer to a single memory location. As a result, in-place operations (especially ones that are vectorized) may result in incorrect behavior. If you need to write to the tensors, please clone them first.
>>> x = torch.tensor([[1], [2], [3]])
>>> x.size()
torch.Size([3, 1])
>>> x.expand(3, 4)
tensor([[ 1, 1, 1, 1],[ 2, 2, 2, 2],[ 3, 3, 3, 3]])
>>> x.expand(-1, 4) # -1 means not changing the size of that dimension
tensor([[ 1, 1, 1, 1],[ 2, 2, 2, 2],[ 3, 3, 3, 3]])
Difference Between view() and reshape()
1/ view(): Does NOT make a copy of the original tensor. It changes the dimensional interpretation (striding) on the original data. In other words, it uses the same chunk of data with the original tensor, so it ONLY works with contiguous data.
2/ reshape(): Returns a view while possible (i.e., when the data is contiguous). If not (i.e., the data is not contiguous), then it copies the data into a contiguous data chunk, and as a copy, it would take up memory space, and also the change in the new tensor would not affect the value in the original tensor.
With contiguous data, reshape() returns a view.
When data is contiguous
x = torch.arange(1,13)
x
>> tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
Reshape returns a view with the new dimension
y = x.reshape(4,3)
y
>>
tensor([[ 1, 2, 3],[ 4, 5, 6],[ 7, 8, 9],[10, 11, 12]])
How do we know it’s a view? Because the element change in new tensor y would affect the value in x, and vice versa
y[0,0] = 100
y
>>
tensor([[100, 2, 3],[ 4, 5, 6],[ 7, 8, 9],[ 10, 11, 12]])
print(x)
>>
tensor([100, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
Next, let’s see how reshape() works on non-contiguous data.
# After transpose(), the data is non-contiguous
x = torch.arange(1,13).view(6,2).transpose(0,1)
x
>>
tensor([[ 1, 3, 5, 7, 9, 11],[ 2, 4, 6, 8, 10, 12]])
# Reshape() works fine on a non-contiguous data
y = x.reshape(4,3)
y
>>
tensor([[ 1, 3, 5],[ 7, 9, 11],[ 2, 4, 6],[ 8, 10, 12]])
# Change an element in y
y[0,0] = 100
y
>>
tensor([[100, 3, 5],[ 7, 9, 11],[ 2, 4, 6],[ 8, 10, 12]])
# Check the original tensor, and nothing was changed
x
>>
tensor([[ 1, 3, 5, 7, 9, 11],[ 2, 4, 6, 8, 10, 12]])
Finally, let’s see if view() can work on non-contiguous data.
No, it can’t!
# After transpose(), the data is non-contiguous
x = torch.arange(1,13).view(6,2).transpose(0,1)
x
>>
tensor([[ 1, 3, 5, 7, 9, 11],[ 2, 4, 6, 8, 10, 12]])
# Try to use view on the non-contiguous data
y = x.view(4,3)
y
>>
-------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
----> 1 y = x.view(4,3)2 yRuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
contiguous操作
reshape是能返回view就view,不能view就拷贝一份
>>> a = torch.arange(4.)
>>> torch.reshape(a, (2, 2))
tensor([[ 0., 1.],[ 2., 3.]])
>>> b = torch.tensor([[0, 1], [2, 3]])
>>> torch.reshape(b, (-1,))
tensor([ 0, 1, 2, 3])
repeat是新克隆内存,但是expand是原地更新stride
import torch
a = torch.arange(10).reshape(2,5)
# b = a.expand(4,5) #这就崩了,多维上没法expand,用repeat
b = a.repeat(2,2)
print('b={}'.format(b))
'''
b=tensor([[0, 1, 2, 3, 4, 0, 1, 2, 3, 4],[5, 6, 7, 8, 9, 5, 6, 7, 8, 9],[0, 1, 2, 3, 4, 0, 1, 2, 3, 4],[5, 6, 7, 8, 9, 5, 6, 7, 8, 9]])
'''
c = torch.arange(3).reshape(1,3)
print('c={} c.stride()={}'.format(c, c.stride()))
d = c.expand(2,3)
print('d={} d.stride()={}'.format(d, d.stride()))
'''
c=tensor([[0, 1, 2]]) c.stride()=(3, 1), 在dim=0上迈3步,在dim=1上迈1步
d=tensor([[0, 1, 2],[0, 1, 2]]) d.stride()=(0, 1), 在dim=0上迈0步,在dim=1上迈1步
'''
d[0][0] = 5
print('c={} d={}'.format(c, d))
'''
c=tensor([[5, 1, 2]]) d=tensor([[5, 1, 2],[5, 1, 2]])
'''
repeat_interleave是把相邻着重复放,但是repeat是整体重复。所以repeat_interleave要指定下dim,但是repeat一次多维重复
This is different from torch.Tensor.repeat() but similar to numpy.repeat.
>>> x = torch.tensor([1, 2, 3])
>>> x.repeat_interleave(2)
tensor([1, 1, 2, 2, 3, 3])
>>> y = torch.tensor([[1, 2], [3, 4]])
>>> torch.repeat_interleave(y, 2)
tensor([1, 1, 2, 2, 3, 3, 4, 4])
>>> torch.repeat_interleave(y, 3, dim=1)
tensor([[1, 1, 1, 2, 2, 2],[3, 3, 3, 4, 4, 4]])
# 第一行重复1遍,第二行重复2遍
>>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0)
tensor([[1, 2],[3, 4],[3, 4]])
>>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0, output_size=3)
tensor([[1, 2],[3, 4],[3, 4]])
- https://stackoverflow.com/questions/48915810/what-does-contiguous-do-in-pytorch
- https://medium.com/analytics-vidhya/pytorch-contiguous-vs-non-contiguous-tensor-view-understanding-view-reshape-73e10cdfa0dd
相关文章:
pytorch view、expand、transpose、permute、reshape、repeat、repeat_interleave
非contiguous操作 There are a few operations on Tensors in PyTorch that do not change the contents of a tensor, but change the way the data is organized. These operations include: narrow(), view(), expand() and transpose() permute() This is where the con…...
uni-app实现下拉刷新
业务逻辑如下: 1.在滚动容器中加入refresher-enabled属性,表示为开启下拉刷新 2.监听事件,添加refresherrefresh事件 3.在事件监听函数中加载数据 4.关闭动画,添加refresher-triggered属性,在数据请求前开启刷新动画…...
vue ts 应用梳理
文章目录 前言一、页面传值1.1 [props](https://cn.vuejs.org/guide/components/props.html)1.2 [emit](https://cn.vuejs.org/guide/components/events.html)1.3 [store](https://pinia.vuejs.org/zh/getting-started.html) 二、实时计算2.1 [watch](https://cn.vuejs.org/gui…...
CUDA12.4文档-全文翻译
本博客参考官方文档进行介绍,全网仅此一家进行中文翻译,走过路过不要错过。 官方网址:https://docs.nvidia.com/cuda/cuda-c-programming-guide/ 本文档分成多个博客进行介绍,在本人专栏中含有所有内容: https://blog.csdn.net/qq_33345365/category_12610860.html CU…...
【C 数据结构】循环链表
文章目录 【 1. 基本原理 】【 2. 循环链表的创建 】2.1 循环链表结点设计2.2 循环单链表初始化 【 3. 循环链表的 插入 】【 4. 循环单链表的 删除操作 】【 5. 循环单链表的遍历 】【 6. 实例 - 循环链表的 增删查改 】【 7. 双向循环链表 】 【 1. 基本原理 】 对于单链表以…...
Python列表
使用场景:列表是用来存储多组数据的 列表是可变类型 列表支持切片 1.基本规则 1.列表使用[]来表示 2.初始化列表:list [] 3.列表可以一次性存储多个数据:[数据1,数据2,数据3,…] 4.列表中的每一项&#…...
谈谈系列之金融直播展业畅想
近些年直播异常火热,对于各大中小型基金证券公司,也纷纷引入直播作为新型展业渠道。在这其中有一部分直接采用第三方云平台,也有少部分选择自建直播平台。当然自建直播平台也不是纯自研,大抵都是外购第三方厂商整体解决方案&#…...
【C 数据结构】双向链表
文章目录 【 1. 基本原理 】【 2. 双向链表的 创建 】实例 - 输出双向链表 【 3. 双向链表 添加节点 】【 4. 双向链表 删除节点 】【 5. 双向链表查找节点 】【 7. 双向链表更改节点 】【 8. 实例 - 双向链表的 增删查改 】 【 1. 基本原理 】 表中各节点中都只包含一个指针&…...
Leetcode刷题之消失的数字(C语言版)
Leetcode刷题之消失的数字(C语言版) 一、题目描述二、题目解析 一、题目描述 数组nums包含从0到n的所有整数,但其中缺了一个。请编写代码找出那个缺失的整数。你有办法在O(n)时间内完成吗? 注意:本题相对书上原题稍作…...
LeetCode654:最大二叉树
题目描述 给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建: 创建一个根节点,其值为 nums 中的最大值。 递归地在最大值 左边 的 子数组前缀上 构建左子树。 递归地在最大值 右边 的 子数组后缀上 构建右子树。 返回 nums 构建的 …...
AI禁区徘徊监测识别摄像机
AI禁区徘徊监测识别摄像机是一种基于人工智能技术的智能监控设备,用于监测禁止进入或逗留的区域。这种摄像机通过高清摄像头实时捕捉场景图像,利用AI算法对人员徘徊行为进行识别和监测,有助于提高安全防范水平,减少潜在的安全风险…...
【学习】什么是信创适配性测试?信创适配性测试的重要性有哪些?
随着信息技术的快速发展和广泛应用,信息技术应用创新(信创)已成为推动我国产业升级和经济发展的重要力量。在信创领域,适配性测试至关重要,它不仅关系到信创产品的质量和性能,还直接影响到用户的使用体验和…...
linux 配置服务开机启动
一、Centos 中配置进程开启启动 1、使用 systemd 服务: (1)创建一个名为 myapp.service 的服务文件: [Unit] DescriptionMyApp #描述 After #描述服务类别 [Service] Typefork…...
React中State管理的4 个关键解决方案
在 React 应用开发中,状态(state)管理是非常重要的一部分。合理地管理状态可以确保组件的行为正确,提高应用的可维护性和性能。然而,在实际使用 React 的 state 时,开发者常常会遇到一些常见的问题和陷阱。 本文将从解决问题的角度,总结 React 中 state 管理的4个关键技巧: 使…...
Testng测试框架(6)--@Factory动态地创建测试类的实例
工厂允许您动态地创建测试。例如,假设您想创建一个测试方法,该方法将多次访问网站上的某个页面,并且您希望使用不同的值来调用它。 public class TestWebServer {Test(parameters { "number-of-times" })public void accessPage(…...
Kubernetes(K8s)运维实战:案例解析与代码实践
一、引言 随着容器技术的普及,Kubernetes(K8s)作为容器编排领域的领军者,已成为企业运维不可或缺的工具。K8s以其强大的自动化管理、可扩展性和高可用性等特点,为运维人员提供了便捷、高效的管理手段。本文将结合具体案…...
nginx反向代理配置详解
首先配置端口 server {listen 3080; server_name 172.20.109.27 localhost;}为了解决刷新后显示404的问题,增加配置如下: location / {root html;index index.html index.htm;try_files $uri $uri.html $uri/ mongrel;}location mongrel {# ip…...
【LeetCode】单调栈类题目详解
所有题目均来自于LeetCode,刷题代码使用的Python3版本 单调栈 通常针对一维数组的问题,如果需要寻找一个元素右边或者左边第一个比自己大或者小的元素的位置,就可以使用单调栈,时间复杂度为O(n) 单调栈的本质是空间换时间&#…...
Python上解决TypeError: not all arguments converted during string formatting错误
目录 背景尝试1: pymysql模块的escape_string方法尝试2: 修改pandas.read_excel引擎尝试3: 回退xlrd版本总结 背景 在Linux上部署的时候, 使用pandas模块读取Excel, 然后pymysql模块入库, 结果发生了错误 Traceback (most recent call last):File "/usr/local/lib64/pyth…...
ASUS华硕ROG幻16Air笔记本电脑GU605M原装出厂Win11系统工厂包下载,带有ASUSRecovery一键重置还原
适用型号:GU605MI、GU605MY、GU605MZ、GU605MV、GU605MU 链接:https://pan.baidu.com/s/1YBmZZbTKpIu883jYCS9KfA?pwd9jd4 提取码:9jd4 华硕原厂Windows11系统带有ASUS RECOVERY恢复功能、自带所有驱动、出厂主题壁纸、系统属性联机支持…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
NPOI操作EXCEL文件 ——CAD C# 二次开发
缺点:dll.版本容易加载错误。CAD加载插件时,没有加载所有类库。插件运行过程中用到某个类库,会从CAD的安装目录找,找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库,就用插件程序加载进…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...
快速排序算法改进:随机快排-荷兰国旗划分详解
随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...
