当前位置: 首页 > news >正文

芒果YOLOv7改进96:检测头篇DynamicHead动态检测头:即插即用|DynamicHead检测头,尺度感知、空间感知、任务感知

该专栏完整目录链接: 芒果YOLOv7深度改进教程

该创新点:在原始的Dynamic Head的基础上,对核心部位进行了二次的改进,在 原论文 《尺度感知、空间感知、任务感知》 的基础上,在 通道感知 的层级上进行了增强,关注每个像素点的比重。

在自己的数据集上改进,有效涨点就可以直接当作自己论文里面的《深度创新点》
应读者要求,新增一篇DynamicHead检测头改进

文章目录

    • Dynamic Head 论文理论部分 + 原创最新改进 YOLOv7 代码实践改进
      • 2 YOLOv7 核心代码改进部分
        • 2.1 YOLOv7深度改进 | 核心代码修改部分
      • 2.2 核心新增代码
      • 2.3 修改部分
      • 2.4 YOLOv7-DynamicHead网络配置文件

相关文章:

芒果YOLOv7改进96:检测头篇DynamicHead动态检测头:即插即用|DynamicHead检测头,尺度感知、空间感知、任务感知

该专栏完整目录链接: 芒果YOLOv7深度改进教程 该创新点:在原始的Dynamic Head的基础上,对核心部位进行了二次的改进,在 原论文 《尺度感知、空间感知、任务感知》 的基础上,在 通道感知 的层级上进行了增强,关注每个像素点的比重。 在自己的数据集上改进,有效涨点就可以…...

独一无二:探索单例模式在现代编程中的奥秘与实践

设计模式在软件开发中扮演着至关重要的角色,它们是解决特定问题的经典方法。在众多设计模式中,单例模式因其独特的应用场景和简洁的实现而广受欢迎。本文将从多个角度详细介绍单例模式,帮助你理解它的定义、实现、应用以及潜在的限制。 1. 什…...

centos7 安装 rabbitmq3.8.5

1.首先安装 erlang 环境: curl -s https://packagecloud.io/install/repositories/rabbitmq/erlang/script.rpm.sh | sudo bash sudo yum install erlang-21.3.8.14-1.el7.x86_64 yum install socat -y 2.安装 rabbitmq https://github.com/rabbitmq/rabbitmq-s…...

利用SOCKS5代理和代理IP提升网络安全与匿名性

一、引言 随着网络技术的迅猛发展,数据安全和隐私保护已成为业界关注的热点。企业和个人用户越来越依赖于各种网络技术来保护敏感信息免受未授权访问。本文将探讨SOCKS5代理、代理IP以及HTTP协议在提升网络安全和匿名性方面的作用和实践应用。 二、基础技术概述 2.…...

C++list模拟实现

Clist模拟实现 list接口总结结点类的模拟实现迭代器的模拟实现迭代器模板参数迭代器类中的构造函数迭代器类中的运算符重载operator和operator - -operator! 和operatoroperator*operator->总览 list 类构造函数拷贝构造函数赋值运算符重载operatorclear&#xf…...

设计模式(22):解释器模式

解释器 是一种不常用的设计模式用于描述如何构成一个简单的语言解释器,主要用于使用面向对象语言开发的解释器和解释器设计当我们需要开发一种新的语言时,可以考虑使用解释器模式尽量不要使用解释器模式,后期维护会有很大麻烦。在项目中&…...

kubernetes docker版本安装测试

文章目录 测试环境kubernetes安装环境配置安装程序下载镜像初始化reset环境init构建kubernetes配置授权信息配置网络插件查看状态 简单实例测试 测试环境 [rootlocalhost ~]# cat /etc/redhat-release CentOS Linux release 7.9.2009 (Core)kubernetes安装 参考kuberneter文档…...

策略模式:灵活调整算法的设计精髓

在软件开发中,策略模式是一种行为型设计模式,它允许在运行时选择算法的行为。通过定义一系列算法,并将每个算法封装起来,策略模式使得算法可以互换使用,这使得算法可以独立于使用它们的客户。本文将详细介绍策略模式的…...

[INS-30014]无法检查指定的位置是否位于 CFS 上

文章目录 一、具体错误二、通用解决方案1、可能的问题原因2、解决方案3、常见原因之hosts文件配置问题hosts配置方法hosts文件不可编辑解决办法 一、具体错误 在安装ORACLE19c的时候,出现无法检查指定的位置是否位于CFS上 二、通用解决方案 1、可能的问题原因 遇…...

机器学习和深度学习 -- 李宏毅(笔记与个人理解)Day 13

Day13 Error surface is rugged…… Tips for training :Adaptive Learning Rate critical point is not the difficult Root mean Square --used in Adagrad 这里为啥是前面的g的和而不是直接只除以当前呢? 这种方法的目的是防止学习率在训练过程中快速衰减。如果只用当前的…...

[Python图像识别] 五十二.水书图像识别 (2)基于机器学习的濒危水书古文字识别研究

该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。目前我进入第二阶段Python图像识别,该部分主要以目标检测、图像…...

Jmeter针对多种响应断言的判断

有时候response返回的结果并非一种,有多种,需要对这几种进行判断的时候需要使用Bean Shell。 (1)首先获取响应数据 String response prev.getResponseDataAsString(); ResponseCode 响应状态码 responseHeaders 响应头信息 res…...

Harmony鸿蒙南向驱动开发-Regulator接口使用

功能简介 Regulator模块用于控制系统中某些设备的电压/电流供应。在嵌入式系统(尤其是手机)中,控制耗电量很重要,直接影响到电池的续航时间。所以,如果系统中某一个模块暂时不需要使用,就可以通过Regulato…...

【opencv】示例-grabcut.cpp 使用OpenCV库的GrabCut算法进行图像分割

left mouse button - set rectangle SHIFTleft mouse button - set GC_FGD pixels CTRLleft mouse button - set GC_BGD pixels 这段代码是一个使用OpenCV库的GrabCut算法进行图像分割的C程序。它允许用户通过交互式方式选择图像中的一个区域,并利用GrabCut算法尝试…...

GEE数据集——巴基斯坦国家级土壤侵蚀数据集(2005 年和 2015 年)

简介 巴基斯坦国家级土壤侵蚀数据集(2005 年和 2015 年) 该数据集采用修订的通用土壤流失方程 (RUSLE),并考虑了六个关键影响因素:降雨侵蚀率 (R)、土壤可侵蚀性 (K)、坡长 (L)、坡陡 (S)、覆盖管理 (C) 和保护措施 (P)&#xff…...

服务器代理

服务器代理 配置:64G内存1 3090(24g)1P4000(8g) SSH连接 工作路径:/home/ubuntu/workspace/python Anaconda路径:/home/Ubuntu 1.在工作路径下创建自己的文件夹作为workspace 2.以用户ubunbtu登…...

【SGDR】《SGDR:Stochastic Gradient Descent with Warm Restarts》

arXiv-2016 code: https://github.com/loshchil/SGDR/blob/master/SGDR_WRNs.py 文章目录 1 Background and Motivation2 Related Work3 Advantages / Contributions4 Method5 Experiments5.1 Datasets and Metric5.2 Single-Model Results5.3 Ensemble Results5.4 Experiment…...

如何将arping以及所有依赖打包安装到另外一台离线ubuntu机器

ubuntu系统下可以使用arping命令检测局域网内一些ip是否冲突,使用方式为: arping xx.xx.xx.xx 在线情况下,可以使用下面命令下载arping,然后使用即可 apt install arping 但是有些情况下机器可能不能上网,这时就需要将…...

mac上如何安装python3

mac上如何安装python3? 安装homebrew 在终端执行命令 /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)" 执行完成后,homebrew和pip等工具就自动安装好了。 接下来安装python3.在终端…...

Java 那些诗一般的 数据类型 (下篇)

本篇会加入个人的所谓鱼式疯言 ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. 🤭🤭🤭可能说的不是那么严谨.但小编初心是能让更多人能接…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage)&#xff1a…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...