当前位置: 首页 > news >正文

2024年妈妈杯数学建模C题思路分析-物流网络分拣中心货量预测及人员排班

# 1 赛题
C 题 物流网络分拣中心货量预测及人员排班
电商物流网络在订单履约中由多个环节组成,图 ’ 是一个简化的物流 网络示意图。其中,分拣中心作为网络的中间环节,需要将包裹按照不同 流向进行分拣并发往下一个场地,最终使包裹到达消费者手中。分拣中心管理效率的提升, 对整体网络的履约效率和运作成本起着十分重要的作用。
在这里插入图片描述
分拣中心的货量预测是电商物流网络重要的研究问题,对分拣中心货 量的精准预测是后续管理及决策的基础,如果管理者可以提前预知之后一 段时间各个分拣中心需要操作的货量,便可以提前对资源进行安排。在此 场景下的货量预测目标一般有两个: 一是根据历史货量、物流网络配置等 信息,预测每个分拣中心每天的货量;二是根据历史货量小时数据,预测每个分拣中心每小时的货量。

分拣中心的货量预测与网络的运输线路有关,通过分析各线路的运输货量,可以得出各分拣中心之间的网络连接关系。当线路关系调整时,可以参考线路的调整信息,得到各分拣中心货量更为准确的预测。

基于分拣中心货量预测的人员排班是接下来要解决的重要问题,分拣 中心的人员包含正式工和临时工两种:正式工是场地长期雇佣的人员,工 作效率较高; 临时工是根据货量情况临时招募的人员, 每天可以任意增减, 但工作效率相对较低、雇佣成本较高。根据货量预测结果合理安排人员, 旨在完成工作的情况下尽可能降低人员成本。针对当前物流网络,其人员
安排班次及小时人效指标情况如下:

  1. 对于所有分拣中心,每天分为 6 个班次,分别为: 00:00-08:00, 05:00- 13:00 ,08:00- 16:00, 12:00-20:00 ,14:00-22:00 ,16:00-24:00,每个人员(正式工或临时工)每天只能出勤一个班次;
  2. 小时人效指标为每人每小时完成分拣的包裹量(包裹量即货量),正 式工的最高小时人效为 25 包裹/小时,临时工的最高小时人效为 20包裹/小时。
    该物流网络包括 57 个分拣中心, 每个分拣中心过去 4 个月的每天货量 如附件 1 所示, 过去 30 天的每小时货量如附件 2 所示。基于以上数据, 请完成以下问题:

问题 1:建立货量预测模型,对 57 个分拣中心未来 30 天每天及每小时的货量进行预测,将预测结果写入结果表 1 和表 2 中。
问题 2:过去 90 天各分拣中心之间的各运输线路平均货量如附件 3 所 示。若未来 30 天分拣中心之间的运输线路发生了变化,具体如附件 4 所示。 根据附件 1-4,请对 57 个分拣中心未来 30 天每天及每小时的货量进行预测,并将预测结果写入结果表 3 和表 4 中。
问题 3:假设每个分拣中心有 60 名正式工, 在人员安排时将优先使用 正式工, 若需额外人员将使用临时工。请基于问题 2 的预测结果建立模型, 给出未来 30 天每个分拣中心每个班次的出勤人数, 并写入结果表 5 中。要 求在每天的货量处理完成的基础上,安排的人天数(例如 30 天每天出勤 200 名员工, 则总人天数为 6000)尽可能少,且每天的实际小时人效尽量
均衡。
问题 4:研究特定分拣中心的排班问题, 这里不妨以 SC60 为例,假设 分拣中心 SC60 当前有 200 名正式工, 请基于问题 2 的预测结果建立模型, 确定未来 30 天每名正式工及临时工的班次出勤计划,即给出未来 30 天每 天六个班次中,每名正式工将在哪些班次出勤,每个班次需要雇佣多少临 时工,并写入结果表 6 中。每名正式工的出勤率(出勤的天数除以总天数 30)不能高于 85% ,且连续出勤天数不能超过 7 天。要求在每天货量处理 完成的基础上,安排的人天数尽可能少,每天的实际小时人效尽量均衡,且正式工出勤率尽量均衡。
注:上面四个问题中, 除了正常完成论文外,每个问题的输出结果表
请一起压缩为“结果.zip ”压缩包格式,并单独上传至竞赛平台。

2 选题分析

A题属于目标优化问题,还结合了动态规划问题,别看题目描述的复杂,只要构建好目标函数就能轻松解决

B题这种类型的题目这几年出的还不少呀,就是机器学习或深度学习的图像目标检测

C题是一个典型的运筹学问题,涉及到预测模型的建立和优化排班策略的制定。解决这个问题需要综合运用统计学、机器学习、优化算法等多学科知识。

D题该问题是一个典型的优化问题,需要综合考虑多个因素,如设备性能、矿山条件、成本和风险等

本次建模题目难度(由高到低) B>A>D>C

!!!A君会先出C题思路!!!

3 解题思路

3.1 简要分析

具体问题描述如下:

货量预测:需要根据历史数据预测未来不同时间段的货量。文档中提供了一系列的时间段,每个时间段对应一个货量值。这些时间段从00:00-08:00开始,以4小时为一个单位,直到24:00结束。预测的目的是为了更好地安排人员和资源,以应对不同时间段的货量变化。

人员排班:基于货量预测结果,需要制定合理的人员排班计划。文档中提到了不同的排班时间段,例如05:00-13:00,12:00-20:00等,以及每个时间段所需的人员数量。排班计划需要考虑到货量高峰和低谷,以及人员的工作时长和休息时间等因素。

数据分析:首先需要对提供的历史货量数据进行分析,找出货量变化的规律和趋势。这可能涉及到时间序列分析、相关性分析等统计方法。

预测模型构建:根据分析结果,构建一个能够预测未来货量的数学模型。这个模型可能需要考虑到季节性因素、特殊事件、节假日等对货量的影响。

优化排班:在预测模型的基础上,制定人员排班计划。这可以通过运筹学中的排班优化模型来实现,如线性规划、整数规划等,以最小化成本或最大化效率。

验证与调整:最后,需要对预测模型和排班计划进行验证,确保它们在实际操作中的有效性和可行性。根据实际情况的反馈,对模型和计划进行必要的调整和优化。

这个问题是一个典型的运筹学问题,需要综合运用数学建模、统计分析和优化技术来解决。解决这个问题不仅可以提高物流中心的运营效率,降低成本,还可以提升员工的工作满意度和服务质量。

3.2 思路更新

第一问思路已出,第一问本质上就是一个Arima预测即可,详细思路放在文档中

在这里插入图片描述

第二问思路更新

C题第二问思路更新,大家注意第二问一定要构建完整的拓扑网络,网上有资料说是构建最短路即可,完全是错的,快递物流系统往往并不能理想的走最短路,要考虑的是负载均衡(保持原负载不变)

在这里插入图片描述
三四问更新
此问题不仅需要预测货量,还需要根据预测结果进行人员排班的优化。这涉及到运筹学中的排班问题,可能需要使用线性规划、整数规划或者其他优化算法来最小化人员成本,同时满足货量处理的需求。

A君给大家构建一个混合整数线性规划(Mixed Integer Linear Programming, MILP)模型作为示范。大家可以根据相同思路构建或优化自己的模型。

该模型的目标是在满足每天货量处理需求的前提下,最小化总人天数,同时尽量保持每天的实际小时人效均衡。

在这里插入图片描述
在这里插入图片描述

第四问其实就是在第三问基础上构建约束条件更多的混合整数线性规划模型。

在这里插入图片描述
完整思路放在文档中。

🥇 最新思路更新(看最新发布的文章即可):
https://blog.csdn.net/dc_sinor?type=blog

4 最新思路更新

🥇 最新思路更新(看最新发布的文章即可):
https://blog.csdn.net/dc_sinor?type=blog

相关文章:

2024年妈妈杯数学建模C题思路分析-物流网络分拣中心货量预测及人员排班

# 1 赛题 C 题 物流网络分拣中心货量预测及人员排班 电商物流网络在订单履约中由多个环节组成,图 ’ 是一个简化的物流 网络示意图。其中,分拣中心作为网络的中间环节,需要将包裹按照不同 流向进行分拣并发往下一个场地,最终使包裹…...

prometheus\skywalking\splunk功能的区别

Prometheus、SkyWalking和Splunk这三个工具在功能上各有特色,以下是它们各自的主要功能特点: Prometheus是一个开源的系统监控和警报工具。它的主要功能包括: 实时监控与警报:Prometheus可以实时监控各种指标,并根据…...

Harmony鸿蒙南向驱动开发-SPI接口使用

功能简介 SPI指串行外设接口(Serial Peripheral Interface),是一种高速的,全双工,同步的通信总线。SPI是由Motorola公司开发,用于在主设备和从设备之间进行通信。 SPI接口定义了操作SPI设备的通用方法集合…...

芒果YOLOv7改进96:检测头篇DynamicHead动态检测头:即插即用|DynamicHead检测头,尺度感知、空间感知、任务感知

该专栏完整目录链接: 芒果YOLOv7深度改进教程 该创新点:在原始的Dynamic Head的基础上,对核心部位进行了二次的改进,在 原论文 《尺度感知、空间感知、任务感知》 的基础上,在 通道感知 的层级上进行了增强,关注每个像素点的比重。 在自己的数据集上改进,有效涨点就可以…...

独一无二:探索单例模式在现代编程中的奥秘与实践

设计模式在软件开发中扮演着至关重要的角色,它们是解决特定问题的经典方法。在众多设计模式中,单例模式因其独特的应用场景和简洁的实现而广受欢迎。本文将从多个角度详细介绍单例模式,帮助你理解它的定义、实现、应用以及潜在的限制。 1. 什…...

centos7 安装 rabbitmq3.8.5

1.首先安装 erlang 环境: curl -s https://packagecloud.io/install/repositories/rabbitmq/erlang/script.rpm.sh | sudo bash sudo yum install erlang-21.3.8.14-1.el7.x86_64 yum install socat -y 2.安装 rabbitmq https://github.com/rabbitmq/rabbitmq-s…...

利用SOCKS5代理和代理IP提升网络安全与匿名性

一、引言 随着网络技术的迅猛发展,数据安全和隐私保护已成为业界关注的热点。企业和个人用户越来越依赖于各种网络技术来保护敏感信息免受未授权访问。本文将探讨SOCKS5代理、代理IP以及HTTP协议在提升网络安全和匿名性方面的作用和实践应用。 二、基础技术概述 2.…...

C++list模拟实现

Clist模拟实现 list接口总结结点类的模拟实现迭代器的模拟实现迭代器模板参数迭代器类中的构造函数迭代器类中的运算符重载operator和operator - -operator! 和operatoroperator*operator->总览 list 类构造函数拷贝构造函数赋值运算符重载operatorclear&#xf…...

设计模式(22):解释器模式

解释器 是一种不常用的设计模式用于描述如何构成一个简单的语言解释器,主要用于使用面向对象语言开发的解释器和解释器设计当我们需要开发一种新的语言时,可以考虑使用解释器模式尽量不要使用解释器模式,后期维护会有很大麻烦。在项目中&…...

kubernetes docker版本安装测试

文章目录 测试环境kubernetes安装环境配置安装程序下载镜像初始化reset环境init构建kubernetes配置授权信息配置网络插件查看状态 简单实例测试 测试环境 [rootlocalhost ~]# cat /etc/redhat-release CentOS Linux release 7.9.2009 (Core)kubernetes安装 参考kuberneter文档…...

策略模式:灵活调整算法的设计精髓

在软件开发中,策略模式是一种行为型设计模式,它允许在运行时选择算法的行为。通过定义一系列算法,并将每个算法封装起来,策略模式使得算法可以互换使用,这使得算法可以独立于使用它们的客户。本文将详细介绍策略模式的…...

[INS-30014]无法检查指定的位置是否位于 CFS 上

文章目录 一、具体错误二、通用解决方案1、可能的问题原因2、解决方案3、常见原因之hosts文件配置问题hosts配置方法hosts文件不可编辑解决办法 一、具体错误 在安装ORACLE19c的时候,出现无法检查指定的位置是否位于CFS上 二、通用解决方案 1、可能的问题原因 遇…...

机器学习和深度学习 -- 李宏毅(笔记与个人理解)Day 13

Day13 Error surface is rugged…… Tips for training :Adaptive Learning Rate critical point is not the difficult Root mean Square --used in Adagrad 这里为啥是前面的g的和而不是直接只除以当前呢? 这种方法的目的是防止学习率在训练过程中快速衰减。如果只用当前的…...

[Python图像识别] 五十二.水书图像识别 (2)基于机器学习的濒危水书古文字识别研究

该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。目前我进入第二阶段Python图像识别,该部分主要以目标检测、图像…...

Jmeter针对多种响应断言的判断

有时候response返回的结果并非一种,有多种,需要对这几种进行判断的时候需要使用Bean Shell。 (1)首先获取响应数据 String response prev.getResponseDataAsString(); ResponseCode 响应状态码 responseHeaders 响应头信息 res…...

Harmony鸿蒙南向驱动开发-Regulator接口使用

功能简介 Regulator模块用于控制系统中某些设备的电压/电流供应。在嵌入式系统(尤其是手机)中,控制耗电量很重要,直接影响到电池的续航时间。所以,如果系统中某一个模块暂时不需要使用,就可以通过Regulato…...

【opencv】示例-grabcut.cpp 使用OpenCV库的GrabCut算法进行图像分割

left mouse button - set rectangle SHIFTleft mouse button - set GC_FGD pixels CTRLleft mouse button - set GC_BGD pixels 这段代码是一个使用OpenCV库的GrabCut算法进行图像分割的C程序。它允许用户通过交互式方式选择图像中的一个区域,并利用GrabCut算法尝试…...

GEE数据集——巴基斯坦国家级土壤侵蚀数据集(2005 年和 2015 年)

简介 巴基斯坦国家级土壤侵蚀数据集(2005 年和 2015 年) 该数据集采用修订的通用土壤流失方程 (RUSLE),并考虑了六个关键影响因素:降雨侵蚀率 (R)、土壤可侵蚀性 (K)、坡长 (L)、坡陡 (S)、覆盖管理 (C) 和保护措施 (P)&#xff…...

服务器代理

服务器代理 配置:64G内存1 3090(24g)1P4000(8g) SSH连接 工作路径:/home/ubuntu/workspace/python Anaconda路径:/home/Ubuntu 1.在工作路径下创建自己的文件夹作为workspace 2.以用户ubunbtu登…...

【SGDR】《SGDR:Stochastic Gradient Descent with Warm Restarts》

arXiv-2016 code: https://github.com/loshchil/SGDR/blob/master/SGDR_WRNs.py 文章目录 1 Background and Motivation2 Related Work3 Advantages / Contributions4 Method5 Experiments5.1 Datasets and Metric5.2 Single-Model Results5.3 Ensemble Results5.4 Experiment…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...

C++ 基础特性深度解析

目录 引言 一、命名空间(namespace) C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用(reference)​ C 中的引用​ 与 C 语言的对比​ 四、inline(内联函数…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...