当前位置: 首页 > news >正文

GPT建模与预测实战

代码链接见文末

效果图:

1.数据样本生成方法

训练配置参数:

--epochs 40 --batch_size 8 --device 0 --train_path data/train.pkl

其中train.pkl是处理后的文件

因此,我们首先需要执行preprocess.py进行预处理操作,配置参数:

--data_path data/novel --save_path data/train.pkl --win_size 200 --step 200

其中--vocab_file是语料表,一般不用修改,--log_path是日志路径

预处理流程如下:

  • 首先,初始化tokenizer
  • 读取作文数据集目录下的所有文件,预处理后,对于每条数据,使用滑动窗口对其进行截断
  • 最后,序列化训练数据 

代码如下:

# 初始化tokenizertokenizer = CpmTokenizer(vocab_file="vocab/chinese_vocab.model")#pip install jiebaeod_id = tokenizer.convert_tokens_to_ids("<eod>")   # 文档结束符sep_id = tokenizer.sep_token_id# 读取作文数据集目录下的所有文件train_list = []logger.info("start tokenizing data")for file in tqdm(os.listdir(args.data_path)):file = os.path.join(args.data_path, file)with open(file, "r", encoding="utf8")as reader:lines = reader.readlines()title = lines[1][3:].strip()    # 取出标题lines = lines[7:]   # 取出正文内容article = ""for line in lines:if line.strip() != "":  # 去除换行article += linetitle_ids = tokenizer.encode(title, add_special_tokens=False)article_ids = tokenizer.encode(article, add_special_tokens=False)token_ids = title_ids + [sep_id] + article_ids + [eod_id]# train_list.append(token_ids)# 对于每条数据,使用滑动窗口对其进行截断win_size = args.win_sizestep = args.stepstart_index = 0end_index = win_sizedata = token_ids[start_index:end_index]train_list.append(data)start_index += stepend_index += stepwhile end_index+50 < len(token_ids):  # 剩下的数据长度,大于或等于50,才加入训练数据集data = token_ids[start_index:end_index]train_list.append(data)start_index += stepend_index += step# 序列化训练数据with open(args.save_path, "wb") as f:pickle.dump(train_list, f)

2.模型训练过程

 (1) 数据与标签

        在训练过程中,我们需要根据前面的内容预测后面的内容,因此,对于每一个词的标签需要向后错一位。最终预测的是每一个位置的下一个词的token_id的概率。

(2)训练过程

        对于每一轮epoch,我们需要统计该batch的预测token的正确数与总数,并计算损失,更新梯度。

训练配置参数:

--epochs 40 --batch_size 8 --device 0 --train_path data/train.pkl
def train_epoch(model, train_dataloader, optimizer, scheduler, logger,epoch, args):model.train()device = args.deviceignore_index = args.ignore_indexepoch_start_time = datetime.now()total_loss = 0  # 记录下整个epoch的loss的总和epoch_correct_num = 0   # 每个epoch中,预测正确的word的数量epoch_total_num = 0  # 每个epoch中,预测的word的总数量for batch_idx, (input_ids, labels) in enumerate(train_dataloader):# 捕获cuda out of memory exceptiontry:input_ids = input_ids.to(device)labels = labels.to(device)outputs = model.forward(input_ids, labels=labels)logits = outputs.logitsloss = outputs.lossloss = loss.mean()# 统计该batch的预测token的正确数与总数batch_correct_num, batch_total_num = calculate_acc(logits, labels, ignore_index=ignore_index)# 统计该epoch的预测token的正确数与总数epoch_correct_num += batch_correct_numepoch_total_num += batch_total_num# 计算该batch的accuracybatch_acc = batch_correct_num / batch_total_numtotal_loss += loss.item()if args.gradient_accumulation_steps > 1:loss = loss / args.gradient_accumulation_stepsloss.backward()# 梯度裁剪torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)# 进行一定step的梯度累计之后,更新参数if (batch_idx + 1) % args.gradient_accumulation_steps == 0:# 更新参数optimizer.step()# 更新学习率scheduler.step()# 清空梯度信息optimizer.zero_grad()if (batch_idx + 1) % args.log_step == 0:logger.info("batch {} of epoch {}, loss {}, batch_acc {}, lr {}".format(batch_idx + 1, epoch + 1, loss.item() * args.gradient_accumulation_steps, batch_acc, scheduler.get_lr()))del input_ids, outputsexcept RuntimeError as exception:if "out of memory" in str(exception):logger.info("WARNING: ran out of memory")if hasattr(torch.cuda, 'empty_cache'):torch.cuda.empty_cache()else:logger.info(str(exception))raise exception# 记录当前epoch的平均loss与accuracyepoch_mean_loss = total_loss / len(train_dataloader)epoch_mean_acc = epoch_correct_num / epoch_total_numlogger.info("epoch {}: loss {}, predict_acc {}".format(epoch + 1, epoch_mean_loss, epoch_mean_acc))# save modellogger.info('saving model for epoch {}'.format(epoch + 1))model_path = join(args.save_model_path, 'epoch{}'.format(epoch + 1))if not os.path.exists(model_path):os.mkdir(model_path)model_to_save = model.module if hasattr(model, 'module') else modelmodel_to_save.save_pretrained(model_path)logger.info('epoch {} finished'.format(epoch + 1))epoch_finish_time = datetime.now()logger.info('time for one epoch: {}'.format(epoch_finish_time - epoch_start_time))return epoch_mean_loss

(3)部署与网页预测展示

        app.py既是模型预测文件,又能够在网页中展示,这需要我们下载一个依赖库:

pip install streamlit

        

生成下一个词流程,每次只根据当前位置的前context_len个token进行生成:

  • 第一步,先将输入文本截断成训练的token大小,训练时我们采用的200,截断为后200个词
  • 第二步,预测的下一个token的概率,采用温度采样和topk/topp采样

最终,我们不断的以自回归的方式不断生成预测结果

这里指定模型目录 

进入项目路径

执行streamlit run app.py 

 生成效果:

 数据与代码链接:https://pan.baidu.com/s/1XmurJn3k_VI5OR3JsFJgTQ?pwd=x3ci 
提取码:x3ci 

 

         

      

 

         

相关文章:

GPT建模与预测实战

代码链接见文末 效果图&#xff1a; 1.数据样本生成方法 训练配置参数&#xff1a; --epochs 40 --batch_size 8 --device 0 --train_path data/train.pkl 其中train.pkl是处理后的文件 因此&#xff0c;我们首先需要执行preprocess.py进行预处理操作&#xff0c;配置参数…...

传统方法(OpenCV)_车道线识别

一、思路 基于OpenCV的库&#xff1a;对视频中的车道线进行识别 1、视频处理&#xff1a;视频读取 2、图像转换&#xff1a;图像转换为灰度图 3、噪声去除&#xff1a;高斯模糊对图像进行去噪&#xff0c;提高边缘检测的准确性 4、边缘检测&#xff1a;Canny算法进行边缘检测…...

Git以及Gitlab的快速使用文档

优质博文&#xff1a;IT-BLOG-CN 安装git 【1】Windows为例&#xff0c;去百度下载安装包。或者去官网下载。安装过秳返里略过&#xff0c;一直下一步即可。丌要忉记设置环境发量。 【2】打开cmd&#xff0c;输入git –version正确输出版本后则git安装成功。 配置ssh Git和s…...

MyBatis Interceptor拦截器高级用法

拦截插入操作 场景描述&#xff1a;插入当前数据时&#xff0c;同时复制当前数据插入多行。比如平台权限的用户&#xff0c;可以同时给其他国家级别用户直接插入数据 实现&#xff1a; import lombok.extern.slf4j.Slf4j; import org.apache.ibatis.executor.Executor; impor…...

Python学习入门(2)——进阶功能

14. 迭代器和迭代协议 在Python中&#xff0c;迭代器是支持迭代操作的对象&#xff0c;即它们可以一次返回其成员中的一个。任何实现了 __iter__() 和 __next__() 方法的对象都是迭代器。 class Count:def __init__(self, low, high):self.current lowself.high highdef __i…...

华为改进点

华为公司可以在员工福利方面做出改进&#xff0c;提高员工的工作满意度和忠诚度。例如&#xff0c;可以增加员工福利&#xff0c;如提供更多灵活的工作时间、提供更好的培训和发展机会、加大健康保障和福利待遇等。 此外&#xff0c;华为公司也可以加强与客户的沟通与合作&…...

分布式技术---------------消息队列中间件之 Kafka

目录 一、Kafka 概述 1.1为什么需要消息队列&#xff08;MQ&#xff09; 1.2使用消息队列的好处 1.2.1解耦 1.2.2可恢复性 1.2.3缓冲 1.2.4灵活性 & 峰值处理能力 1.2.5异步通信 1.3消息队列的两种模式 1.3.1点对点模式&#xff08;一对一&#xff0c;消费者主动…...

BGP扩展知识总结

一、BGP的宣告问题 在BGP协议中每台运行BGP的设备上&#xff0c;宣告本地直连路由在BGP协议中运行BGP协议的设备&#xff0c;来宣告通过IGP学习到的未运行BGP协议设备产生的路由&#xff1b;&#xff08;常见&#xff09; 在BGP协议中宣告本地路由表中路由条目时&#xff0c;将…...

华为OD-C卷-按身高和体重排队[100分]

题目描述 某学校举行运动会&#xff0c;学生们按编号(1、2、3…n)进行标识&#xff0c;现需要按照身高由低到高排列&#xff0c;对身高相同的人&#xff0c;按体重由轻到重排列&#xff1b;对于身高体重都相同的人&#xff0c;维持原有的编号顺序关系。请输出排列后的学生编号…...

云原生(八)、Kubernetes基础(一)

K8S 基础 # 获取登录令牌 kubectl create token admin --namespace kubernetes-dashboard1、 NameSpace Kubernetes 启动时会创建四个初始名字空间 default:Kubernetes 包含这个名字空间&#xff0c;以便于你无需创建新的名字空间即可开始使用新集群。 kube-node-lease: 该…...

Linux 系统解压缩文件

Linux系统&#xff0c;可以使用unzip命令来解压zip文件 方法如下 1. 打开终端&#xff0c;在命令行中输入以下命令来安装unzip&#xff1a; sudo apt-get install unzip 1 2. 假设你想要将zip文件解压缩到名为"target_dir"的目录中&#xff0c;在终端中切换到目标路…...

linux如何使 CPU使用率保持在指定百分比?

目录 方法1&#xff1a;&#xff08;固定在100%&#xff09; 方法2&#xff1a;&#xff08;可以指定0~100%&#xff09; 方法3&#xff1a;使用ChaosBlade工具&#xff08;0~100%&#xff09; 方法1&#xff1a;&#xff08;固定在100%&#xff09; for i in seq 1 $(cat /pro…...

LLMs之Morphic:Morphic(一款具有生成式用户界面的人工智能答案引擎)的简介、安装、使用方法之详细攻略

LLMs之Morphic&#xff1a;Morphic(一款具有生成式用户界面的人工智能答案引擎)的简介、安装、使用方法之详细攻略 目录 Morphic的简介 1、技术栈 Morphic的安装和使用方法 1、克隆仓库 2、安装依赖 3、填写密钥 4、本地运行应用 部署 Morphic的简介 2024年4月初发布&#xff…...

[react] useState的一些小细节

1.无限循环 因为setState修改是异步的,加上会触发函数重新渲染, 如果代码长这样 一秒再修改,然后重新触发setTImeout, 然后再触发,重复触发循环 如果这样呢 还是会,因为你执行又会重新渲染 2.异步修改数据 为什么修改多次还是跟不上呢? 函数传参解决 因为是异步修改 ,所以…...

蓝桥杯【第15届省赛】Python B组

这题目难度对比历届是相当炸裂的简单了…… A&#xff1a;穿越时空之门 【问题描述】 随着 2024 年的钟声回荡&#xff0c;传说中的时空之门再次敞开。这扇门是一条神秘的通道&#xff0c;它连接着二进制和四进制两个不同的数码领域&#xff0c;等待着勇者们的探索。 在二进制…...

CSS aspect-ratio属性设置元素宽高比

aspect-ratio 是CSS的一个属性&#xff0c;用于设置元素的期望宽高比。它设置确保元素保持特定的比例&#xff0c;不受其内容或容器大小的影响。 语法&#xff1a; aspect-ratio: <ratio>;其中 <ratio> 是一个由斜杠&#xff08;/&#xff09;分隔的两个数字&…...

Jones矩阵符号运算

文章目录 Jones向量Jones矩阵 有关Jones矩阵、Jones向量的基本原理&#xff0c;可参考这个&#xff1a; 通过Python理解Jones矩阵&#xff0c;本文主要介绍sympy中提供的有关偏振光学的符号计算工具 Jones向量 Jones向量是描述光线偏振状态的重要工具&#xff0c;例如一个偏振…...

解决 App 自动化测试的常见痛点!

App 自动化测试中有些常见痛点问题&#xff0c;如果框架不能很好的处理&#xff0c;就可能出现元素定位超时找不到的情况&#xff0c;自动化也就被打断终止了。很容易打消做自动化的热情&#xff0c;导致从入门到放弃。比如下面的两个问题&#xff1a; 一是 App 启动加载时间较…...

2016NOIP普及组真题 1. 买铅笔

线上OJ&#xff1a; 一本通&#xff1a;http://ybt.ssoier.cn:8088/problem_show.php?pid1973 核心思想&#xff1a; 向上取整的代码 (m (n-1))/n 。&#xff08;本题考点与2023年J组的第一和第二题一样&#xff09; 比如需要买31支笔&#xff0c;每包30支&#xff0c;则需要…...

机器学习—数据集(二)

1可用数据集 公司内部 eg:百度 数据接口 花钱 数据集 学习阶段可用的数据集&#xff1a; sklearn:数据量小&#xff0c;方便学习kaggle&#xff1a;80万科学数据&#xff0c;真实数据&#xff0c;数据量大UCI&#xff1a;收录了360个数据集&#xff0c;覆盖科学、生活、经济等…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...