GPT建模与预测实战
代码链接见文末
效果图:

1.数据样本生成方法
训练配置参数:
--epochs 40 --batch_size 8 --device 0 --train_path data/train.pkl
其中train.pkl是处理后的文件
因此,我们首先需要执行preprocess.py进行预处理操作,配置参数:
--data_path data/novel --save_path data/train.pkl --win_size 200 --step 200

其中--vocab_file是语料表,一般不用修改,--log_path是日志路径

预处理流程如下:
- 首先,初始化tokenizer
-
读取作文数据集目录下的所有文件,预处理后,对于每条数据,使用滑动窗口对其进行截断
-
最后,序列化训练数据
代码如下:
# 初始化tokenizertokenizer = CpmTokenizer(vocab_file="vocab/chinese_vocab.model")#pip install jiebaeod_id = tokenizer.convert_tokens_to_ids("<eod>") # 文档结束符sep_id = tokenizer.sep_token_id# 读取作文数据集目录下的所有文件train_list = []logger.info("start tokenizing data")for file in tqdm(os.listdir(args.data_path)):file = os.path.join(args.data_path, file)with open(file, "r", encoding="utf8")as reader:lines = reader.readlines()title = lines[1][3:].strip() # 取出标题lines = lines[7:] # 取出正文内容article = ""for line in lines:if line.strip() != "": # 去除换行article += linetitle_ids = tokenizer.encode(title, add_special_tokens=False)article_ids = tokenizer.encode(article, add_special_tokens=False)token_ids = title_ids + [sep_id] + article_ids + [eod_id]# train_list.append(token_ids)# 对于每条数据,使用滑动窗口对其进行截断win_size = args.win_sizestep = args.stepstart_index = 0end_index = win_sizedata = token_ids[start_index:end_index]train_list.append(data)start_index += stepend_index += stepwhile end_index+50 < len(token_ids): # 剩下的数据长度,大于或等于50,才加入训练数据集data = token_ids[start_index:end_index]train_list.append(data)start_index += stepend_index += step# 序列化训练数据with open(args.save_path, "wb") as f:pickle.dump(train_list, f)
2.模型训练过程
(1) 数据与标签
在训练过程中,我们需要根据前面的内容预测后面的内容,因此,对于每一个词的标签需要向后错一位。最终预测的是每一个位置的下一个词的token_id的概率。

(2)训练过程
对于每一轮epoch,我们需要统计该batch的预测token的正确数与总数,并计算损失,更新梯度。
训练配置参数:
--epochs 40 --batch_size 8 --device 0 --train_path data/train.pkl
def train_epoch(model, train_dataloader, optimizer, scheduler, logger,epoch, args):model.train()device = args.deviceignore_index = args.ignore_indexepoch_start_time = datetime.now()total_loss = 0 # 记录下整个epoch的loss的总和epoch_correct_num = 0 # 每个epoch中,预测正确的word的数量epoch_total_num = 0 # 每个epoch中,预测的word的总数量for batch_idx, (input_ids, labels) in enumerate(train_dataloader):# 捕获cuda out of memory exceptiontry:input_ids = input_ids.to(device)labels = labels.to(device)outputs = model.forward(input_ids, labels=labels)logits = outputs.logitsloss = outputs.lossloss = loss.mean()# 统计该batch的预测token的正确数与总数batch_correct_num, batch_total_num = calculate_acc(logits, labels, ignore_index=ignore_index)# 统计该epoch的预测token的正确数与总数epoch_correct_num += batch_correct_numepoch_total_num += batch_total_num# 计算该batch的accuracybatch_acc = batch_correct_num / batch_total_numtotal_loss += loss.item()if args.gradient_accumulation_steps > 1:loss = loss / args.gradient_accumulation_stepsloss.backward()# 梯度裁剪torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)# 进行一定step的梯度累计之后,更新参数if (batch_idx + 1) % args.gradient_accumulation_steps == 0:# 更新参数optimizer.step()# 更新学习率scheduler.step()# 清空梯度信息optimizer.zero_grad()if (batch_idx + 1) % args.log_step == 0:logger.info("batch {} of epoch {}, loss {}, batch_acc {}, lr {}".format(batch_idx + 1, epoch + 1, loss.item() * args.gradient_accumulation_steps, batch_acc, scheduler.get_lr()))del input_ids, outputsexcept RuntimeError as exception:if "out of memory" in str(exception):logger.info("WARNING: ran out of memory")if hasattr(torch.cuda, 'empty_cache'):torch.cuda.empty_cache()else:logger.info(str(exception))raise exception# 记录当前epoch的平均loss与accuracyepoch_mean_loss = total_loss / len(train_dataloader)epoch_mean_acc = epoch_correct_num / epoch_total_numlogger.info("epoch {}: loss {}, predict_acc {}".format(epoch + 1, epoch_mean_loss, epoch_mean_acc))# save modellogger.info('saving model for epoch {}'.format(epoch + 1))model_path = join(args.save_model_path, 'epoch{}'.format(epoch + 1))if not os.path.exists(model_path):os.mkdir(model_path)model_to_save = model.module if hasattr(model, 'module') else modelmodel_to_save.save_pretrained(model_path)logger.info('epoch {} finished'.format(epoch + 1))epoch_finish_time = datetime.now()logger.info('time for one epoch: {}'.format(epoch_finish_time - epoch_start_time))return epoch_mean_loss
(3)部署与网页预测展示
app.py既是模型预测文件,又能够在网页中展示,这需要我们下载一个依赖库:
pip install streamlit

生成下一个词流程,每次只根据当前位置的前context_len个token进行生成:
- 第一步,先将输入文本截断成训练的token大小,训练时我们采用的200,截断为后200个词
-
第二步,预测的下一个token的概率,采用温度采样和topk/topp采样
最终,我们不断的以自回归的方式不断生成预测结果
这里指定模型目录

进入项目路径

执行streamlit run app.py
生成效果:

数据与代码链接:https://pan.baidu.com/s/1XmurJn3k_VI5OR3JsFJgTQ?pwd=x3ci
提取码:x3ci
相关文章:
GPT建模与预测实战
代码链接见文末 效果图: 1.数据样本生成方法 训练配置参数: --epochs 40 --batch_size 8 --device 0 --train_path data/train.pkl 其中train.pkl是处理后的文件 因此,我们首先需要执行preprocess.py进行预处理操作,配置参数…...
传统方法(OpenCV)_车道线识别
一、思路 基于OpenCV的库:对视频中的车道线进行识别 1、视频处理:视频读取 2、图像转换:图像转换为灰度图 3、噪声去除:高斯模糊对图像进行去噪,提高边缘检测的准确性 4、边缘检测:Canny算法进行边缘检测…...
Git以及Gitlab的快速使用文档
优质博文:IT-BLOG-CN 安装git 【1】Windows为例,去百度下载安装包。或者去官网下载。安装过秳返里略过,一直下一步即可。丌要忉记设置环境发量。 【2】打开cmd,输入git –version正确输出版本后则git安装成功。 配置ssh Git和s…...
MyBatis Interceptor拦截器高级用法
拦截插入操作 场景描述:插入当前数据时,同时复制当前数据插入多行。比如平台权限的用户,可以同时给其他国家级别用户直接插入数据 实现: import lombok.extern.slf4j.Slf4j; import org.apache.ibatis.executor.Executor; impor…...
Python学习入门(2)——进阶功能
14. 迭代器和迭代协议 在Python中,迭代器是支持迭代操作的对象,即它们可以一次返回其成员中的一个。任何实现了 __iter__() 和 __next__() 方法的对象都是迭代器。 class Count:def __init__(self, low, high):self.current lowself.high highdef __i…...
华为改进点
华为公司可以在员工福利方面做出改进,提高员工的工作满意度和忠诚度。例如,可以增加员工福利,如提供更多灵活的工作时间、提供更好的培训和发展机会、加大健康保障和福利待遇等。 此外,华为公司也可以加强与客户的沟通与合作&…...
分布式技术---------------消息队列中间件之 Kafka
目录 一、Kafka 概述 1.1为什么需要消息队列(MQ) 1.2使用消息队列的好处 1.2.1解耦 1.2.2可恢复性 1.2.3缓冲 1.2.4灵活性 & 峰值处理能力 1.2.5异步通信 1.3消息队列的两种模式 1.3.1点对点模式(一对一,消费者主动…...
BGP扩展知识总结
一、BGP的宣告问题 在BGP协议中每台运行BGP的设备上,宣告本地直连路由在BGP协议中运行BGP协议的设备,来宣告通过IGP学习到的未运行BGP协议设备产生的路由;(常见) 在BGP协议中宣告本地路由表中路由条目时,将…...
华为OD-C卷-按身高和体重排队[100分]
题目描述 某学校举行运动会,学生们按编号(1、2、3…n)进行标识,现需要按照身高由低到高排列,对身高相同的人,按体重由轻到重排列;对于身高体重都相同的人,维持原有的编号顺序关系。请输出排列后的学生编号…...
云原生(八)、Kubernetes基础(一)
K8S 基础 # 获取登录令牌 kubectl create token admin --namespace kubernetes-dashboard1、 NameSpace Kubernetes 启动时会创建四个初始名字空间 default:Kubernetes 包含这个名字空间,以便于你无需创建新的名字空间即可开始使用新集群。 kube-node-lease: 该…...
Linux 系统解压缩文件
Linux系统,可以使用unzip命令来解压zip文件 方法如下 1. 打开终端,在命令行中输入以下命令来安装unzip: sudo apt-get install unzip 1 2. 假设你想要将zip文件解压缩到名为"target_dir"的目录中,在终端中切换到目标路…...
linux如何使 CPU使用率保持在指定百分比?
目录 方法1:(固定在100%) 方法2:(可以指定0~100%) 方法3:使用ChaosBlade工具(0~100%) 方法1:(固定在100%) for i in seq 1 $(cat /pro…...
LLMs之Morphic:Morphic(一款具有生成式用户界面的人工智能答案引擎)的简介、安装、使用方法之详细攻略
LLMs之Morphic:Morphic(一款具有生成式用户界面的人工智能答案引擎)的简介、安装、使用方法之详细攻略 目录 Morphic的简介 1、技术栈 Morphic的安装和使用方法 1、克隆仓库 2、安装依赖 3、填写密钥 4、本地运行应用 部署 Morphic的简介 2024年4月初发布ÿ…...
[react] useState的一些小细节
1.无限循环 因为setState修改是异步的,加上会触发函数重新渲染, 如果代码长这样 一秒再修改,然后重新触发setTImeout, 然后再触发,重复触发循环 如果这样呢 还是会,因为你执行又会重新渲染 2.异步修改数据 为什么修改多次还是跟不上呢? 函数传参解决 因为是异步修改 ,所以…...
蓝桥杯【第15届省赛】Python B组
这题目难度对比历届是相当炸裂的简单了…… A:穿越时空之门 【问题描述】 随着 2024 年的钟声回荡,传说中的时空之门再次敞开。这扇门是一条神秘的通道,它连接着二进制和四进制两个不同的数码领域,等待着勇者们的探索。 在二进制…...
CSS aspect-ratio属性设置元素宽高比
aspect-ratio 是CSS的一个属性,用于设置元素的期望宽高比。它设置确保元素保持特定的比例,不受其内容或容器大小的影响。 语法: aspect-ratio: <ratio>;其中 <ratio> 是一个由斜杠(/)分隔的两个数字&…...
Jones矩阵符号运算
文章目录 Jones向量Jones矩阵 有关Jones矩阵、Jones向量的基本原理,可参考这个: 通过Python理解Jones矩阵,本文主要介绍sympy中提供的有关偏振光学的符号计算工具 Jones向量 Jones向量是描述光线偏振状态的重要工具,例如一个偏振…...
解决 App 自动化测试的常见痛点!
App 自动化测试中有些常见痛点问题,如果框架不能很好的处理,就可能出现元素定位超时找不到的情况,自动化也就被打断终止了。很容易打消做自动化的热情,导致从入门到放弃。比如下面的两个问题: 一是 App 启动加载时间较…...
2016NOIP普及组真题 1. 买铅笔
线上OJ: 一本通:http://ybt.ssoier.cn:8088/problem_show.php?pid1973 核心思想: 向上取整的代码 (m (n-1))/n 。(本题考点与2023年J组的第一和第二题一样) 比如需要买31支笔,每包30支,则需要…...
机器学习—数据集(二)
1可用数据集 公司内部 eg:百度 数据接口 花钱 数据集 学习阶段可用的数据集: sklearn:数据量小,方便学习kaggle:80万科学数据,真实数据,数据量大UCI:收录了360个数据集,覆盖科学、生活、经济等…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
