当前位置: 首页 > news >正文

数学基础:矩阵

来自: https://www.shuxuele.com/algebra/matrix-determinant.html

一、矩阵的行列式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

二、矩阵简单知识

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、矩阵乘法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、单位矩阵

在这里插入图片描述

五、逆矩阵一:简单2阶矩阵求法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

六、逆矩阵二:3、4阶逆矩阵求法

在这里插入图片描述

6.1 求余子式矩阵

在这里插入图片描述在这里插入图片描述

6.2 求代数余子式矩阵

在这里插入图片描述

6.3 求伴随矩阵

在这里插入图片描述

6.4 乘以 1/行列式,得最终结果

在这里插入图片描述
在这里插入图片描述

相关文章:

数学基础:矩阵

来自: https://www.shuxuele.com/algebra/matrix-determinant.html 一、矩阵的行列式 二、矩阵简单知识 三、矩阵乘法 四、单位矩阵 五、逆矩阵一:简单2阶矩阵求法 六、逆矩阵二:3、4阶逆矩阵求法 6.1 求余子式矩阵 6.2 求代数余子式矩阵 6.3 求伴随矩阵…...

Windows完全卸载MySQL后再下载安装(附安装包)

目录 友情提醒第一章:如何完全卸载干净mysql教程(三个步骤完全卸载)1)步骤一:卸载程序2)步骤二:删除文件3)步骤三:删除注册表信息 第二章:下载软件两种方式1&…...

【央国企专场】——国家电网

国家电网目录 一、电网介绍1、核心业务2、电网组成 二、公司待遇三、公司招聘1、招聘平台2、考试安排2.3 考试内容 一、电网介绍 1、核心业务 国家电网公司(State Grid Corporation of China,简称SGCC)是中国最大的国有企业之一&#xff0c…...

linux 安装MySQL

一、安装mysql 1. 先上传mysql的安装包 使用 rz上传图中的两个rpm包即可 上传的目录: /export/software 2. 卸载linux原生的mysql rpm -qa | grep mysql 如果能看到上图中的mysql-lib…,说明已经安装了,需将其卸载,如:…...

行云防水堡-打造企业数据安全新防线

企业数据安全,顾名思义就是通过各种手段或者技术或者工具保障企业数据的安全性;保障数据信息的硬件、软件及数据受到保护,不受偶然的或者恶意的原因而遭到破坏、更改、泄露,系统连续可靠正常地运行,信息服务不中断。目…...

在ORACLE中找出某列非数字类型的数据

在ORACLE中找出某列非数字类型的数据 使用正则表达式判断非数字值 在Oracle中,我们可以使用正则表达式来判断一个值是否为非数字。正则表达式提供了一种强大的模式匹配和搜索功能,通过匹配数字字符来判断是否为数字。以下是使用正则表达式判断非数字值的…...

建造者模式:构造复杂对象的艺术

在面向对象的设计中,建造者模式是一种重要的创建型设计模式,专门用来构建复杂的对象。它主要目的是将对象的构造代码与其表示代码分离,使同样的构建过程可以创建不同的表示。本文将详细介绍建造者模式的定义、实现、应用场景以及优缺点&#…...

Fence同步

在《Android图形显示系统》没有介绍到帧同步的相关概念,这里简单介绍补充一下。 在图形显示系统中,图形缓存GraphicBuffer可以被不同的硬件来访问,如CPU、GPU、HWC都可以对缓存进行读写,如果同时对图形缓存进行操作,有…...

【UE 委托】如何利用函数指针理解委托的基本原理

目录 0 引言1 函数指针模拟多播委托 🙋‍♂️ 作者:海码007📜 专栏:UE虚幻引擎专栏💥 标题:【UE 委托】如何利用函数指针理解委托的基本原理❣️ 寄语:书到用时方恨少,事非经过不知难…...

【云原生篇】K8S部署全面指南

部署Kubernetes(K8s)有多种方式,可以根据组织的需求、基础设施和资源来选择最合适的部署方法。以下是一些主流的Kubernetes部署方式: 1. 手动部署 kubeadm:Kubernetes官方提供的工具,可以帮助你快速部署和…...

uni-app + vue3实现input输入框保留2位小数的2种方案

首先说明输入框中的格式限制如下: (1)当第一位为0时,第二位只能输入小数点,且不能输入其他数字(如00) (2)当第一位不为0时,后边不限制 (3&…...

原型模式:复制对象的智能解决方案

在软件开发过程中,对象的创建可能是一个昂贵的操作,特别是当对象的初始化包括从数据库加载数据、进行IO操作或进行复杂计算时。原型模式是一种创建型设计模式,它通过复制现有的实例来创建新的对象实例,从而避免了类初始化时的高成…...

量子信息产业生态研究(一):关于《量子技术公司营销指南(2023)》的讨论

写在前面。量子行业媒体量子内参(Quantum Insider)编制的《量子技术公司营销指南》是一本实用的英文手册,它旨在帮助量子科技公司建立有效的营销策略,同时了解如何将自己定位成各自的行业专家。本文对这篇指南的主要内容进行了翻译…...

vue开发工具和开发环境,测试环境等

Vue.js 的开发主要依赖于一些核心的工具和技术,它们共同构建了一个强大的开发环境,使开发者能够高效地创建和管理 Vue 应用程序。以下是一些主要的 Vue.js 开发工具和资源: 文本编辑器:如 Visual Studio Code (VS Code)&#xff…...

C++---vector容器

是STL容器中的一种常用的容器,由于其大小(size)可变,常用于数组大小不可知的情况下来替代数组。vector容器与数组十分相似,被称为动态数组。时间复杂度为O(1)。 数组数据通常存储在栈中,vector数据通常存储…...

面向电力行业定制安全云工作站解决方案,麒麟信安出席2024年电力企业信创替代技术研讨会

日前,由中国电子企业协会主办的“2024年电力企业信创替代技术研讨会”在江苏南京正式召开。会议以国家推进实现自主可控、加快建设“数字中国”为大背景,聚焦电力企业紧抓“信创替代”机遇,通过安全可靠的软硬件迭代升级,实现企业…...

初识 QT

初始QT 什么是QTQT发展史QT支持的平台QT的优点QT的应用场景搭建QT开发环境QT的开发工具概述QT下载安装 使用QT创建项目QT 实现Hello World程序使用按钮控件来实现使用标签控件来实现 项目文件解析widget.hmain.cppwidget.cppwidget.ui.pro文件 对象树QT 窗口坐标体系 什么是QT …...

4. Django 探究FBV视图

4. 探究FBV视图 视图(Views)是Django的MTV架构模式的V部分, 主要负责处理用户请求和生成相应的响应内容, 然后在页面或其他类型文档中显示. 也可以理解为视图是MVC架构里面的C部分(控制器), 主要处理功能和业务上的逻辑. 我们习惯使用视图函数处理HTTP请求, 即在视图里定义def…...

二手车价格预测第十三名方案总结

代码开源链接:GitHub - wujiekd/Predicting-used-car-prices: 阿里天池与Datawhale联合举办二手车价格预测比赛:优胜奖方案代码总结 比赛介绍 赛题以二手车市场为背景,要求选手预测二手汽车的交易价格,这是一个典型的回归问题。…...

力扣刷题 二叉树层序遍历相关题目II

NO.116 填充每个节点的下一个右侧节点指针 给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下: struct Node {int val;Node *left;Node *right;Node *next; } 填充它的每个 next 指针,…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...