当前位置: 首页 > news >正文

2024年MathorCup数学建模B题甲骨文智能识别中原始拓片单字自动分割与识别研究解题文档与程序

2024年第十四届MathorCup高校数学建模挑战赛

B题 甲骨文智能识别中原始拓片单字自动分割与识别研究

原题再现:

  甲骨文是我国目前已知的最早成熟的文字系统,它是一种刻在龟甲或兽骨上的古老文字。甲骨文具有极其重要的研究价值,不仅对中国文明的起源具有重要意义,也对世界文明的研究有着深远影响。在我国政府的大力推动下,甲骨文研究已经进入一个全新的发展阶段。人工智能和大数据技术被应用于甲骨文全息性研究及数字化工程建设,成为甲骨文信息处理领域的研究热点。

  甲骨文拓片图像分割是甲骨文数字化工程的基础问题,其目的是利用数字图像处理和计算机视觉技术,在甲骨文原始拓片图像的复杂背景中提取出特征分明且互不交叠的独立文字区域。它是甲骨文字修复、字形复原与建模、文字识别、拓片缀合等处理的技术基础[2]。然而,甲骨拓片图像分割往往受到点状噪声、人工纹理和固有纹理三类干扰元素的严重影响[3]且甲骨文图像来源广泛,包括拓片、拍照、扫描、临摹等,不同的图像来源,其干扰元素的影响是不同的。由于缺乏对甲骨文字及其干扰元素的形态先验特征的特殊考量,通用的代表性图像分割方法目前尚不能对甲骨文原始拓片图像中的文字目标和点状噪声、人工纹理、固有纹理进行有效判别,其误分割率较高,在处理甲骨拓片图像时均有一定局限性。如何从干扰众多的复杂背景中准确地分割出独立文字区域,仍然是一个亟待解决的具有挑战性的问题。

  图1为一张甲骨文原始拓片的图像分割示例,左图为一整张甲骨文原始拓片,右图即为利用图像分割算法[4]实现的拓片图像上甲骨文的单字分割。甲骨文的同一个字会有很多异体字,这无疑增加了甲骨文识别的难度,图2展示了甲骨文中“人”字的不同异体字。
在这里插入图片描述
  现希望通过对已标记的甲骨文图像进行分析、特征提取和建模,从而实现对一张新的甲骨文图像进行单个文字的自动分割和识别。具体任务如下:

  问题1:对于附件1(Pre test 文件夹)给定的三张甲骨文原始拓片图片进行图像预处理,提取图像特征,建立甲骨文图像预处理模型,实现对甲骨文图像于扰元素的初步判别和处理。

  问题 2:对甲骨文原始拓片图像进行分析,建立一个快速准确的甲骨文图像分割模型,实现对不同的甲骨文原始拓片图像进行自动单字分割,并从不同维度进行模型评估。其中附件2(Train 文件夹)为已标注分割的数据集。

  问题 3:利用建立的甲骨文图像分割模型对附件3(Test文件夹)中的200 张甲骨文原始拓片图像进行自动单字分割,并将分割结果放在“Test results.xlsx”中,此文件单独上传至竞赛平台。

  问题 4:基于前三问对甲骨文原始拓片图像的单字分割研究,请采用合适的方法进行甲骨文原始拓片的文字识别,附件4(Recognize 文件夹)中给出了部分已标注的甲骨文字形(不限于此训练集,可自行查找其他资料,如使用外部资料需在论文中注明来源),请对测试集中的 50 张甲骨文原始拓片图像进行文字自动识别,并以适当结果呈现。

程序代码:

#你不仅长得帅,想的还挺美#你不仅长得帅,想的还挺美
#你不仅长得帅,想的还挺美#你不仅长得帅,想的还挺美
#你不仅长得帅,想的还挺美#你不仅长得帅,想的还挺美
#你不仅长得帅,想的还挺美#你不仅长得帅,想的还挺美
#你不仅长得帅,想的还挺美#你不仅长得帅,想的还挺美
#你不仅长得帅,想的还挺美#你不仅长得帅,想的还挺美
#你不仅长得帅,想的还挺美#你不仅长得帅,想的还挺美
#你不仅长得帅,想的还挺美#你不仅长得帅,想的还挺美
#你不仅长得帅,想的还挺美#你不仅长得帅,想的还挺美
#你不仅长得帅,想的还挺美#你不仅长得帅,想的还挺美
#你不仅长得帅,想的还挺美#你不仅长得帅,想的还挺美
#你不仅长得帅,想的还挺美#你不仅长得帅,想的还挺美
#你不仅长得帅,想的还挺美#你不仅长得帅,想的还挺美

相关文章:

2024年MathorCup数学建模B题甲骨文智能识别中原始拓片单字自动分割与识别研究解题文档与程序

2024年第十四届MathorCup高校数学建模挑战赛 B题 甲骨文智能识别中原始拓片单字自动分割与识别研究 原题再现: 甲骨文是我国目前已知的最早成熟的文字系统,它是一种刻在龟甲或兽骨上的古老文字。甲骨文具有极其重要的研究价值,不仅对中国文…...

嵌入式与移动物联网开发教程和案例

一、嵌入式与移动物联网概述 嵌入式系统是指嵌入到设备中的专用计算机系统,用于控制、监视或辅助设备操作。而移动物联网则是指通过物联网技术将各种智能设备与互联网连接起来,实现设备之间的互联互通和智能化管理。嵌入式与移动物联网技术的结合&#…...

AttachVoExample

目录 1、 AttachVoExample 1.1、 GeneratedCriteria 1.2、 addCriterion 1.3、 andFnameGreaterThanOrEqualTo 1.4、 GeneratedCriteria Atta...

图像处理特征提取

图像处理中的特征提取是指从图像数据中提取出具有区分性和代表性的特征,以用于图像分类、目标检测、图像匹配等任务。下面介绍几种常见的图像处理特征提取方法: 颜色特征:颜色是图像中最直观且重要的特征之一。常见的颜色特征提取方法包括颜色…...

前端大屏适配几种方案

一、方案一:remfont-size 动态设置HTML根字体大小和body字体大小,会使用到lib-flexible.js插件lib-flexible.js (function flexible(window, document) {var docEl document.documentElementvar dpr window.devicePixelRatio || 1// adjust body font…...

2011年认证杯SPSSPRO杯数学建模B题(第一阶段)生物多样性的评估全过程文档及程序

2011年认证杯SPSSPRO杯数学建模 B题 生物多样性的评估 原题再现: 2010 年是联合国大会确定的国际生物多样性年。保护地球上的生物多样性已经越来越被人类社会所关注,相关的大规模科研和考察计划也层出不穷。为了更好地建立国际交流与专家间的合作&…...

AcWing 793. 高精度乘法——算法基础课题解

AcWing 793. 高精度乘法 题目描述 给定两个非负整数(不含前导 00) A 和 B,请你计算 AB 的值。 输入格式 共两行,第一行包含整数 A,第二行包含整数 B。 输出格式 共一行,包含 AB 的值。 数据范围 1≤…...

【一刷《剑指Offer》】面试题 3:二维数组中的查找

力扣对应题目链接:240. 搜索二维矩阵 II - 力扣(LeetCode) 核心考点:数组相关,特性观察,时间复杂度把握。 一、《剑指Offer》对应内容 二、分析题目 正常查找的过程本质就是排除的过程,谁排除…...

Linux下静态库与动态库使用总结

区别 使用静态库占用的磁盘空间相对比动态库要大。 如果多个可执行程序使用库中同一个函数,那么链接静态库时同一个函数的代码会被复制多份,而链接动态库只复制一份。动态库可共享且版本更新方便 静态链接库在程序编译的时候就被加载进来,不…...

分布式任务调度:架构、原理与实践

引言 在当今快速发展的科技领域中,任务调度作为管理和优化计算资源的重要工具,扮演着至关重要的角色。从单机环境到分布式系统,任务调度的演进不仅跟随着计算机技术的进步,更是为了应对日益复杂的应用场景和需求。本博客将深入探…...

ping命令返回无法访问目标主机和请求超时浅析

在日常经常用ping命令测试网络是否通信正常,使用ping命令时也经常会遇到这两种情况,那么表示网络出现了问题。 1、请求超时的原因 可以看到“请求超时”没有收到任何回复。要知道,IP数据报是有生存时间的,当其生存时间为零时就会…...

地球上的七大洲介绍

地球上的七大洲示意图: 1. 亚洲(Asia):世界上最大的洲,面积约为44579000平方公里。亚洲地域辽阔,包括从北极圈到赤道的各种气候和地形。它拥有世界上最多的人口,也是世界上一些最古老文明的发源…...

IntelliJ IDEA 2024 for Mac/Win:引领Java开发新纪元的高效集成环境

在日新月异的软件开发领域,一款高效、智能的集成开发环境(IDE)无疑是程序员们不可或缺的神兵利器。今天,我要为大家介绍的,正是这样一款集大成之作——IntelliJ IDEA 2024。无论是Mac用户还是Windows用户,只…...

Java 中命令模式,请用代码具体举例

在Java中,命令模式是一种行为设计模式,它允许将请求封装成一个对象,从而使得可以参数化其他对象对请求进行调用、队列化请求、或者记录请求日志,同时支持可撤销的操作。 下面是一个简单的示例代码,展示了如何使用命令模…...

低延时+高并发+强事务丨DolphinDB 交易型内存存储引擎 IMOLTP 使用指南

1. 背景 在一些数据库应用场景中,例如金融行业的交易系统,其主要工作负载来源于对关系表的高频度、高并发的更新和查询操作。这样的应用场景要求数据的读写和计算能够具有低延迟、高并发的特征,同时保证极高的数据一致性,并提供 …...

写代码的修养

看山是山,看水是水 此境界 对业务的思考是浅层的,代码写的不通用,扩展性差,表现在无设计模式 看山不是山,看水不是水 此境界 对业务的思考是中层的,代码写的通用,扩展性好,表现为…...

springboot 问题整合

springboot 启动后访问报错 问题:org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): 原因:mybatis 的全局配置文件和 sql 映射文件没有写 解决:在 application.yml 中添加 mybatis 配置 mybatis:# 全局配…...

UNIAPP二维码展示页亮度调至最亮返回恢复进入前亮度

onLoad(params) {let num plus.screen.getBrightness().toString(); //转字符串是要存到stoage中number类型会存储失败plus.storage.setItem("pmld", num)plus.screen.setBrightness(1); //设置屏幕亮度,范围0-1 }onUnload() {let platformuni.getSystem…...

Golang ProtoBuf 初学者完整教程:安装

一、Protobuf 特点 更高效:使用二进制编码,相比XML/JSON更加高效 跨语言支持:Protobuf 在 .proto 定义需要处理的结构化数据,可以通过 protoc 工具,将 .proto 文件转换为 C、C、Golang、Java、Python 等多种语言的代…...

Isolation Forest 简介

1. 简介 孤立森林 iForest(Isolation Forest)是一种无监督学习算法,用于识别异常值。其基本原理是:异常数据由于数量较少且与正常数据差异较大,因此在被隔离时需要较少的步骤。 两个假设: 1. 异常的值是非常少的(如果异常值很多&…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...