使用SpeechRecognition和vosk处理ASR
SpeechRecognition可以支持多种模型语音转文字,感觉vosk还不错,使用起来也简单一些;百度也有PaddleSpeech,但是安装起来太麻烦,不是这个库版本不对就是那个库有问题,用起来不方便;
安装SpeechRecognition库:
pip install SpeechRecognition
安装vosk库:
pip install vosk
使用vosk库还需要下载对应的模型,去官网VOSK Models下载:
中文的有3个模型,模型小的运行快,准确度没有大的好,选一个下载完zip解压就行,代码里配置目录和模型,为了方便直接解压到项目目录里了:
另外需要wav语音测试文件,可以自己录音或者去在线免费文字转语音 - TTSMaker官网 | 马克配音 制造点wav语音文件;
demo:
#!/usr/bin/env python3
# coding = utf-8
"""
# Project: workspace_py
# File: test_speech_recognition_vosk.py
# Author: FlyLikeButterfly
# Time: 2024/4/15 11:05
"""
import speech_recognition as sr
from vosk import Modelr = sr.Recognizer()
r.vosk_model = Model(model_path='vosk_models/vosk-model-small-cn-0.22', model_name='vosk-model-small-cn-0.22')
# r.vosk_model = Model(model_path='vosk_models/vosk-model-cn-0.22', model_name='vosk-model-cn-0.22')
# r.vosk_model = Model(model_path='vosk_models/vosk-model-cn-kaldi-multicn-0.15', model_name='vosk-model-cn-kaldi-multicn-0.15')
with sr.AudioFile('test_24000_16.wav') as source:audio = r.record(source)
result = r.recognize_vosk(audio, language='zh-cn')
print(result)
运行结果:
返回结果是一个string字符串,可以用json转一下:
结果:
注意支持的文件只有3种格式:WAV/AIFF/FLAC,使用其他格式的会报错:
另外SpeechRecognition也可以直接使用麦克风的录音:
with sr.Microphone() as mic:audio = r.listen(mic, timeout=3, phrase_time_limit=3)
result = r.recognize_vosk(audio, language='zh-cn')
print(result)
但是这个还需要安装pyaudio模块;
这个SpeechRecognition似乎没有直接提供读取bytes音频数据的接口,不过r.record方法和r.listen方法的返回值都是AudioData类,我们可以直接实例化AudioData给recognize_vosk()方法用,这个类的构造方法解释如下:
第一个参数,可以使用音频的bytes数据,wav和pcm都可以;
第二个参数,是音频的采样率Hz,8000Hz、16000Hz等等;
第三个参数,是采样位宽,单位是字节,16位采样是2个字节,8位采样是1字节,支持1-4;
测试代码块:
with open('test_24000_16.wav', 'rb') as wav_file:wav_data = wav_file.read()
wav_source = sr.AudioData(wav_data, 24000, 2)
wav_result = r.recognize_vosk(wav_source, language='zh-cn')
print(wav_result)with open('test_8000_16.pcm', 'rb') as pcm_file:pcm_data = pcm_file.read()
pcm_source = sr.AudioData(pcm_data, 8000, 2)
pcm_result = r.recognize_vosk(pcm_source, language='zh-cn')
print(pcm_result)
运行结果:
只是这个库好像没有标点恢复功能,百度的那个有标点恢复;
相关文章:

使用SpeechRecognition和vosk处理ASR
SpeechRecognition可以支持多种模型语音转文字,感觉vosk还不错,使用起来也简单一些;百度也有PaddleSpeech,但是安装起来太麻烦,不是这个库版本不对就是那个库有问题,用起来不方便; 安装SpeechR…...
【Go】通道:缓冲通道和非缓冲通道
目录 通道的基本概念 缓冲通道 非缓冲通道 总结 通道的基本概念 在Go语言中,通道是一种特殊的类型,用于在goroutine之间传递数据。你可以将通道想象为数据的传输管道。通道分为两种类型: 非缓冲通道(Unbuffered Channels&…...
Java中数组的使用
在Java编程中,数组是一种非常重要的数据结构,它允许我们存储相同类型的多个元素。对于初学者来说,理解数组的基本概念、初始化、遍历、默认值以及内存分配和使用注意事项是非常关键的。 一、数组的概念 数组是一个可以容纳多个相同类型数据…...
CAP5_Monday
A Set to Max (Easy Version) 给定数组 a 和 b,可以执行以下操作任意次 : 让 a l ∼ a r a_l\sim a_r al∼ar 中的所有所有元素变成 a i a_i ai ( l ≤ i ≤ r ) (l\leq i\leq r) (l≤i≤r), 其中 1 ≤ l ≤ r ≤ n 1\leq l \leq r \leq n 1≤…...

科大讯飞星火开源大模型iFlytekSpark-13B GPU版部署方法
星火大模型的主页:iFlytekSpark-13B: 讯飞星火开源-13B(iFlytekSpark-13B)拥有130亿参数,新一代认知大模型,一经发布,众多科研院所和高校便期待科大讯飞能够开源。 为了让大家使用的更加方便,科…...

SpringBoot基于RabbitMQ实现消息延迟队列方案
知识小科普 在此之前,简单说明下基于RabbitMQ实现延时队列的相关知识及说明下延时队列的使用场景。 延时队列使用场景 在很多的业务场景中,延时队列可以实现很多功能,此类业务中,一般上是非实时的,需要延迟处理的&a…...
Go语言使用标准库时常见错误
Go的标准库是一组增加和拓展语言的核心包。然而,很容易误用标准库,或者我们对其行为理解有限,导致产生了bug或不应该在生产级应用程序中某些功能。 1. 提供错误的持续时间 标准库提供了获取 time.Duration 的常用函数和方法,但由于 time.Duration 是 int64 的自定义类型,…...

UE5不打包启用像素流 ubuntu22.04
首先查找引擎中像素流的位置: zkzk-ubuntu2023:/media/zk/Data/Linux_Unreal_Engine_5.3.2$ sudo find ./ -name get_ps_servers.sh [sudo] zk 的密码: ./Engine/Plugins/Media/PixelStreaming/Resources/WebServers/get_ps_servers.sh然后在指定路径中…...
Redis 常用数据类型常用命令和应用场景
首先先混个眼熟 Redis 中的 8 种常用数据类型: 5 种基础数据类型:String(字符串)、List(列表)、Set(集合)、Hash(散列)、Zset(有序集合࿰…...

ins视频批量下载,instagram批量爬取视频信息
简介 Instagram 是目前最热门的社交媒体平台之一,拥有大量优质的视频内容。但是要逐一下载这些视频往往非常耗时。在这篇文章中,我们将介绍如何使用 Python 编写一个脚本,来实现 Instagram 视频的批量下载和信息爬取。 我们使用selenium获取目标用户的 HTML 源代码,并将其保存…...
Canvas图形编辑器-数据结构与History(undo/redo)
Canvas图形编辑器-数据结构与History(undo/redo) 这是作为 社区老给我推Canvas,于是我也学习Canvas做了个简历编辑器 的后续内容,主要是介绍了对数据结构的设计以及History能力的实现。 在线编辑: https://windrunnermax.github.io/CanvasEditor开源地…...

阿里云Centos7下编译glibc
编译glibc 原来glibc版本 编译前需要的环境: CentOS7 gcc 8.3.0 gdb 8.3.0 make 4.0 binutils 2.39 (ld -v) python 3.6.8 其他看INSTALL, 但有些版本也不易太高 wget https://mirrors.aliyun.com/gnu/glibc/glibc-2.37.tar.gz tar -zxf glibc-2.37.tar.gz cd glibc-2.37/ …...

UE5数字孪生系列笔记(四)
场景的切换 创建一个按钮的用户界面UMG 创建一个Actor,然后将此按钮UMG添加到组件Actor中 调节几个全屏的背景 运行结果 目标点切换功能制作 设置角色到这个按钮的位置效果 按钮被点击就进行跳转 多个地点的切换与旋转 将之前的目标点切换逻辑替换成旋转的逻…...

品牌故事化:Kompas.ai如何塑造深刻的品牌形象
在这个信息爆炸的时代,品牌故事化已经成为企业塑造独特形象、与消费者建立情感联系的重要手段。一个引人入胜的品牌故事不仅能够吸引消费者的注意力,还能够在消费者心中留下持久的印象,建立起强烈的情感连接。本文将深入探讨品牌故事化对于构…...
5g和2.4g频段有什么区别
运行的频段不同 2.4G和5G频段的主要区别在于它们运行的频段不同,2.4G频段运行在2.4GHz的频段上,而5G频段(这里指的是5GHz频段)运行在5GHz的频段上。12 这导致了两者在传输速度、覆盖范围、抗干扰能力等方面的明显差异。以下是详…...

交通管理在线服务系统|基于Springboot的交通管理系统设计与实现(源码+数据库+文档)
交通管理在线服务系统目录 目录 基于Springboot的交通管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、用户信息管理 2、驾驶证业务管理 3、机动车业务管理 4、机动车业务类型管理 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最新计…...
konva.js 工具类
konva.js 工具类 class KonvaCanvas {/*** 初始化画布* param {String} domId 容器dom id*/constructor(domId) {this.layer null;this.stage null;this.scale 1;this.init(domId);}/*** 聚焦到指定元素* param {String} elementId 元素dom id*/focusOn(elementId) {if (!t…...

php未能在vscode识别?
在设置里搜php,找到settings.json,设置你的安装路径即可。 成功...

解读MongoDB官方文档获取mongo7.0版本的安装步骤与基本使用
mongo式一款NOSQL数据库,用于存储非结构化数据,mongo是一种用于存储json的数据数据,可以通过mongo提供的命令解析json获取想要的值。 数据模型 了解关系数据库会很熟悉database,table,row,column的概念,分别是数据库,…...

【数据结构|C语言版】顺序表
前言1. 初步认识数据结构2. 线性表3. 顺序表3.1 顺序表的概念3.1 顺序表的分类3.2 动态顺序表的实现 结语 前言 各位小伙伴大家好!小编来给大家讲解一下数据结构中顺序表的相关知识。 1. 初步认识数据结构 【概念】数据结构是计算机存储、组织数据的⽅式。 数据…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...

Vue3 PC端 UI组件库我更推荐Naive UI
一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用,前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率,还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库(Naive UI、Element …...

数据分析六部曲?
引言 上一章我们说到了数据分析六部曲,何谓六部曲呢? 其实啊,数据分析没那么难,只要掌握了下面这六个步骤,也就是数据分析六部曲,就算你是个啥都不懂的小白,也能慢慢上手做数据分析啦。 第一…...

Redis上篇--知识点总结
Redis上篇–解析 本文大部分知识整理自网上,在正文结束后都会附上参考地址。如果想要深入或者详细学习可以通过文末链接跳转学习。 1. 基本介绍 Redis 是一个开源的、高性能的 内存键值数据库,Redis 的键值对中的 key 就是字符串对象,而 val…...

二维数组 行列混淆区分 js
二维数组定义 行 row:是“横着的一整行” 列 column:是“竖着的一整列” 在 JavaScript 里访问二维数组 grid[i][j] 表示 第i行第j列的元素 let grid [[1, 2, 3], // 第0行[4, 5, 6], // 第1行[7, 8, 9] // 第2行 ];// grid[i][j] 表示 第i行第j列的…...