当前位置: 首页 > news >正文

限流算法详解

限流是我们经常会碰到的东西,顾名思义就是限制流量。它能保证我们的系统不会被突然的流量打爆,保证系统的稳定运行。像我们生活中,地铁就会有很多护栏,弯弯绕绕的,这个就是一种限流。像我们抢茅台,肯定大部分流量也是会被限流的,你的请求可能根本没进到下单等环节就被拦截了。

计数限流

最简单的限流算法就是计数限流了,例如系统能同时处理 100 个请求,保存一个计数器,处理了一个请求,计数器加一,一个请求处理完毕之后计数器减一。

每次请求来的时候看看计数器的值,如果超过阈值要么拒绝。

非常的简单粗暴,计数器的值要是存内存中就算单机限流算法。存中心存储里,例如 Redis 中,集群机器访问就算分布式限流算法。

优点就是:简单粗暴,单机在 Java 中可用 Atomic 等原子类、分布式就 Redis incr。

缺点就是:只有数量,没有时间的概念。一秒处理100个请求,和一分钟处理100个请求是不一样的。

固定窗口限流

它相比于计数限流主要是多了个时间窗口的概念。计数器每过一个时间窗口就重置。 规则是

在时间窗口内,累加访问次数,这个时间窗口过了之后,计数器清零;

缺点就是在临界时间如果出现突发流量的情况,会超过阈值。

——|——|——

0 1 2

滑动窗口限流

滑动窗口限流解决固定窗口临界值的问题,可以保证在任意时间窗口内都不会超过阈值。

相对于固定窗口,滑动窗口除了需要引入计数器之外还需要记录时间窗口内每个请求到达的时间点,因此对内存的占用会比较多

规则如下,假设时间窗口为 1 秒:

  • 记录每次请求的时间

  • 统计每次请求的时间 至 往前推 1 秒这个时间窗口内请求数,并且 1 秒前的数据可以删除。

  • 统计的请求数小于阈值就记录这个请求的时间,并允许通过,反之拒绝。

在这里插入图片描述

但是滑动窗口和固定窗口都无法解决短时间之内集中流量的突击

我们所想的限流场景,例如每秒限制 100 个请求。希望请求每 10ms 来一个,这样我们的流量处理就很平滑,但是真实场景很难控制请求的频率。因此可能存在 5ms 内就打满了阈值的情况。

当然对于这种情况还是有变型处理的,例如设置多条限流规则。不仅限制每秒 100 个请求,再设置每 10ms 不超过 2 个。

漏桶算法

如下图所示,水滴持续滴入漏桶中,底部定速流出。如果水滴滴入的速率大于流出的速率,当存水超过桶的大小的时候就会溢出。

规则如下:

  • 请求来了放入桶中

  • 桶内请求量满了拒绝请求

  • 服务定速从桶内拿请求处理

在这里插入图片描述

优点既是缺点,流量处理太过平滑。面对突发请求,服务的处理速度和平时是一样的,这其实不是我们想要的,在面对突发流量我们希望在系统平稳的同时,提升用户体验即能更快的处理请求,而不是和正常流量一样,循规蹈矩的处理

令牌桶算法

令牌桶其实和漏桶的原理类似,只不过漏桶是定速地流出,而令牌桶是定速地往桶里塞入令牌,然后请求只有拿到了令牌才能通过,之后再被服务器处理。

当然令牌桶的大小也是有限制的,假设桶里的令牌满了之后,定速生成的令牌会丢弃。

规则:

  • 定速的往桶内放入令牌

  • 令牌数量超过桶的限制,丢弃

  • 请求来了先向桶内索要令牌,索要成功则通过被处理,反之拒绝

一般而言我们不需要自己实现限流算法来达到限流的目的,不管是接入层限流还是细粒度的接口限流其实都有现成的轮子使用,其实现也是用了上述我们所说的限流算法。

比如Google Guava 提供的限流工具类 RateLimiter,是基于令牌桶实现的,并且扩展了算法,支持预热功能。

阿里开源的限流框架 Sentinel 中的匀速排队限流策略,就采用了滑动窗口。

Nginx 中的限流模块 limit_req_zone,采用了漏桶算法,还有 OpenResty 中的 resty.limit.req库等等。

Guava如何实现令牌桶算法

根据令牌桶的原理,我们可能第一直觉会觉得使用生产者-消费者模式,一个线程定时向阻塞队列添加令牌,而请求作为消费线程去获取令牌。如果并发量不大的情况,这个实现没有什么问题。但一般情况下,使用限流都是高并发的场景,而且系统压力已经临界极限了,这个时候cpu忙碌,放令牌的线程可能没法被及时唤醒,造成放令牌延迟,同时定时器会创建调度线程,也会对系统性能产生影响。

所以Guava没有使用定时线程。它的办法很简单,就是通过经过的时间来判断有多少令牌产生,并保存下目前的令牌数。

举个例子,假设限制1s一个请求。启动之后,刚开始没有请求,到10秒的时候来了个请求。因为过了10s,所以就可以判断有10个令牌产生,然后消耗一个,剩9个令牌,记录下来。又过了10s再来了一个请求。那么又有10个令牌产生,消耗一个,还剩18个令牌。

通过这种简单的方式,就可以实现令牌桶了。

  public double acquire(int permits) {long microsToWait = reserve(permits); // sleep的时间stopwatch.sleepMicrosUninterruptibly(microsToWait);return 1.0 * microsToWait / SECONDS.toMicros(1L);}
  final long reserveEarliestAvailable(int requiredPermits, long nowMicros) {resync(nowMicros);long returnValue = nextFreeTicketMicros;// 需要消耗储存的令牌的数量double storedPermitsToSpend = min(requiredPermits, this.storedPermits);// 需要等待新创建的令牌的数量double freshPermits = requiredPermits - storedPermitsToSpend;// 需要等待的时间long waitMicros =storedPermitsToWaitTime(this.storedPermits, storedPermitsToSpend)+ (long) (freshPermits * stableIntervalMicros);// 下次令牌生成的时间this.nextFreeTicketMicros = LongMath.saturatedAdd(nextFreeTicketMicros, waitMicros);this.storedPermits -= storedPermitsToSpend;return returnValue;
  /*** Updates {@code storedPermits} and {@code nextFreeTicketMicros} based on the current time.*/void resync(long nowMicros) {// if nextFreeTicket is in the past, resync to nowif (nowMicros > nextFreeTicketMicros) {double newPermits = (nowMicros - nextFreeTicketMicros) / coolDownIntervalMicros();// 存储新生成的令牌storedPermits = min(maxPermits, storedPermits + newPermits);nextFreeTicketMicros = nowMicros;}}

sentinel滑动窗口算法

    @Overridepublic void addPass(int count) {WindowWrap<MetricBucket> wrap = data.currentWindow();wrap.value().addPass(count);}
public WindowWrap<T> currentWindow(long timeMillis) {if (timeMillis < 0) {return null;}int idx = calculateTimeIdx(timeMillis);// Calculate current bucket start time.long windowStart = calculateWindowStart(timeMillis);/** Get bucket item at given time from the array.** (1) Bucket is absent, then just create a new bucket and CAS update to circular array.* (2) Bucket is up-to-date, then just return the bucket.* (3) Bucket is deprecated, then reset current bucket.*/while (true) {WindowWrap<T> old = array.get(idx);if (old == null) {WindowWrap<T> window = new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));if (array.compareAndSet(idx, null, window)) {// Successfully updated, return the created bucket.return window;} else {// Contention failed, the thread will yield its time slice to wait for bucket available.Thread.yield();}} else if (windowStart == old.windowStart()) {return old;} else if (windowStart > old.windowStart()) {if (updateLock.tryLock()) {try {// Successfully get the update lock, now we reset the bucket.return resetWindowTo(old, windowStart);} finally {updateLock.unlock();}} else {// Contention failed, the thread will yield its time slice to wait for bucket available.Thread.yield();}} else if (windowStart < old.windowStart()) {// Should not go through here, as the provided time is already behind.return new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));}}}

相关文章:

限流算法详解

限流是我们经常会碰到的东西&#xff0c;顾名思义就是限制流量。它能保证我们的系统不会被突然的流量打爆&#xff0c;保证系统的稳定运行。像我们生活中&#xff0c;地铁就会有很多护栏&#xff0c;弯弯绕绕的&#xff0c;这个就是一种限流。像我们抢茅台&#xff0c;肯定大部…...

Spark/Hive

Spark/HiveHive 原理Spark with HiveSparkSession Hive Metastorespark-sql CLI Hive MetastoreBeeline Spark Thrift ServerHive on SparkHive 擅长元数据管理Spark 擅长高效的分布式计算 Spark Hive 集成 : Hive on Spark : Hive 用 Spark 作为底层的计算引擎时Spark w…...

HashMap底层的实现原理(JDK8)

目录一、知识点回顾二、HashMap 的 put() 和 get() 的实现2.1 map.put(k, v) 实现原理2.2 map.get(k) 实现原理三、HashMap 的常见面试题3.1 为何随机增删、查询效率都很高&#xff1f;3.2 为什么放在 HashMap 集合 key 部分的元素需要重写 equals 方法?3.3 HashMap 的 key 为…...

操作系统-整理

进程 介绍 进程是系统进行资源分配和调度的一个独立单位。每个进程都有自己的独立内存空间&#xff0c;不同进程通过进程间通信来通信。由于进程占据独立的内存&#xff0c;所以上下文进程间的切换开销&#xff08;栈、寄存器、虚拟内存、文件句柄等&#xff09;比较大&#…...

系统换行符的思考

各系统换行符 换行符&#xff0c;也即是回车换行&#xff0c;因为表示为Carriage-Return和Line-Feed。 回车用Return-Carrige表示&#xff0c;简写为CR&#xff0c;字符表示为\r。 换行用Line-Feed表示&#xff0c;简写为LF&#xff0c;字符表示为\n。 由于历史原因&#xf…...

Wwise集成到unreal

1、Wwise集成到Unreal 1.1 安装必要的软件 安装unreal 5.1&#xff1b;安装Audiokinetic Launcher&#xff1b;集成版本是Wwise 2021.1.12.7973。Audiokinetic Launcher下载地址&#xff1a; https://www.audiokinetic.com/zh/thank-you/launcher/windows/?refdownload&pl…...

前端秘籍之=>八股文经卷=>(原生Js篇)【持续更新中...】

大家好&#xff0c;最近想了想&#xff0c;打算总结归纳一版前端八股文经卷&#xff0c;给大家提供学习参考&#xff0c;如果帮助到大家&#xff0c;请大家&#xff0c;一键三连支持一下&#xff0c;你们的支持会激励我更加努力的更新更多有用的知识&#xff0c;博主先在这里谢…...

【Python安装配置教程】

Python由荷兰数学和计算机科学研究学会的吉多范罗苏姆于1990年代初设计&#xff0c;作为一门叫做ABC语言的替代品。Python提供了高效的高级数据结构&#xff0c;还能简单有效地面向对象编程。Python语法和动态类型&#xff0c;以及解释型语言的本质&#xff0c;使它成为多数平台…...

Spring-Retry失败重试

文章目录 重试的场景引入依赖启动类serviceController@Retryable参数@Recover注意事项重试的场景 1、网络波动需要,导致请求失败,需要重发。 2、发送消息失败,需要重发,重发失败要记录日志 … 引入依赖 <!-- spring-retry--> <dependency><groupId>or…...

【目标检测 DETR】通俗理解 End-to-End Object Detection with Transformers,值得一品。

文章目录DETR1. 亮点工作1.1 E to E1.2 self-attention1.3 引入位置嵌入向量1.4 消除了候选框生成阶段2. Set Prediction2.1 N个对象2.2 Hungarian algorithm3. 实例剖析4. 代码4.1 配置文件4.1.1 数据集的类别数4.1.2 训练集和验证集的路径4.1.3 图片的大小4.1.4 训练时的批量…...

项目ER图和资料

常用的数据类型 模型类 一对多 from app import db import datetimeclass BaseModel(db.Model):__abstract__ Truecreate_time db.Column(db.DateTime,defaultdatetime.datetime.now())update_time db.Column(db.DateTime,defaultdatetime.datetime.now())class Role(db.M…...

剑指 Offer 20. 表示数值的字符串(java+python)

请实现一个函数用来判断字符串是否表示数值&#xff08;包括整数和小数&#xff09;。 数值&#xff08;按顺序&#xff09;可以分成以下几个部分&#xff1a; 若干空格 一个 小数 或者 整数 &#xff08;可选&#xff09;一个 ‘e’ 或 ‘E’ &#xff0c;后面跟着一个 整数…...

程序员的逆向思维

前要&#xff1a; 为什么你读不懂面试官提问的真实意图&#xff0c;导致很难把问题回答到面试官心坎上? 为什么在面试结束时&#xff0c;你只知道问薪资待遇&#xff0c;不知道如何高质量反问? 作为一名程序员&#xff0c;思维和技能是我们职场生涯中最重要的两个方面。有时候…...

吐血整理学习方法,2年多功能测试成功进阶自动化测试,月薪23k+......

目录&#xff1a;导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09;前言 测试进阶方向 测试进…...

mysql慢查询:pt-query-digest 分析

"某些SQL语句执行效率慢"&#xff0c;这个问题总体上分为两类&#xff1a; 出现了慢查询语句某些查询语句没有使用索引 由于数据的写入量非常大&#xff0c;所以要想直接打开慢查询日志来查看到底哪些语句有问题几乎是不可能的&#xff0c;因为日志的刷新速度太快了…...

git的使用整合

git的下载和安装暂时不论述了&#xff0c;将git安装后会自动配置环境变量&#xff0c;所以环境变量也不需要配置。 一、初始化配置 打开git bash here(使用linux系统下运行的口令)&#xff0c;弹出一个类似于cmd的窗口。 &#xff08;1&#xff09;配置属性 git config --glob…...

XCPC第九站———背包问题!

1.01背包问题 我们首先定义一个二维数组f&#xff0c;其中f[i][j]表示在前i个物品中取且总体积不超过j的取法中的最大价值。那么我们如何得到f[i][j]呢&#xff1f;我们运用递推的思想。由于第i个物品只有选和不选两种情况&#xff0c;当不选第i个物品时&#xff0c;f[i][j]f[i…...

【软考 系统架构设计师】论文范文④ 论基于构件的软件开发

>>回到总目录<< 文章目录 论基于构件的软件开发范文摘要正文论基于构件的软件开发 软件系统的复杂性不断增长、软件人员的频繁流动和软件行业的激烈竞争迫使软件企业提高软件质量、积累和固化知识财富,并尽可能地缩短软件产品的开发周期。 集软件复用、分布式对…...

spring-integration-redis中分布式锁RedisLockRegistry的使用

pom依赖&#xff1a;<!-- redis --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency><dependency><groupId>org.springframework.integ…...

城市通电(prim算法)

acwing3728 蓝桥杯集训每日一题 平面上遍布着 n 座城市&#xff0c;编号 1∼n。 第 i 座城市的位置坐标为 (xi,yi) 不同城市的位置有可能重合。 现在要通过建立发电站和搭建电线的方式给每座城市都通电。 一个城市如果建有发电站&#xff0c;或者通过电线直接或间接的与建…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

Unity中的transform.up

2025年6月8日&#xff0c;周日下午 在Unity中&#xff0c;transform.up是Transform组件的一个属性&#xff0c;表示游戏对象在世界空间中的“上”方向&#xff08;Y轴正方向&#xff09;&#xff0c;且会随对象旋转动态变化。以下是关键点解析&#xff1a; 基本定义 transfor…...

高分辨率图像合成归一化流扩展

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 1 摘要 我们提出了STARFlow&#xff0c;一种基于归一化流的可扩展生成模型&#xff0c;它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流&#xff08;TARFlow&am…...