【重回王座】ChatGPT发布最新模型gpt-4-turbo-2024-04-09
今天,新版GPT-4 Turbo再次在大型模型排行榜上荣登榜首,成功超越了此前领先的Claude 3 Opus。另外,新模型在处理长达64k的上下文时,性能竟能够与旧版在处理26k上下文时的表现相当。
目前GPT-4 Turbo仅限于ChatGPT Plus的用户,想升级到Plus服务可以按照Plus升级教程升级。若还没有GPT账号,那么请移步获取GPT账号Pronton版或获取GPT账号Gmail版。
知识库截止时间已经更新为2024年4月,收到新版本推送的同学会看到以下通知。还未收到推送的不妨再耐心等待一下。

从今天起,所有的ChatGPT Plus用户都可以用上最新版的GPT-4 Turbo了!基准测试结果显示,GPT-4 Turbo在数学能力上相较于上一代有了显著的提升。


奥特曼本人都表示,GTP4现在更智能,用起来也更舒适。

GPT-4 Turbo的加持让ChatGPT在写作、数学、逻辑推理以及编码等能力上实现了显著的提升。试了一下,果然最新数据已经更新到4月份了。

当使用ChatGPT写作时,你会发现新版本的响应速度更快,交流更为直接,且更擅长运用口语化的表达方式。简而言之,新版本在写作上更加贴近人类自然语言的使用习惯,减少了AI味。简单做个测试,让GTP发送一个提醒朋友回复生日晚宴的邀请的短信,看看前后版本的表现:

GPT-4 Turbo 的亮相可以追溯到去年 11 月份的 OpenAI 开发者大会,但其一直都是以「预览版」的方式向开发者提供,直到两天前,OpenAI 才正式通过 API 方式推出这一新版本。这次版本更新的内容如下:
-
全面开放,可通过「gpt-4-turbo」来使用新模型
-
基础能力大更新
-
自带读图能力,无需使用 4v 接口
-
128K 上下文
该模型推出后不久,Poe 平台也迅速地将其集成到了自己的服务中。如果你是 Poe 的会员,相信已经玩得「乐不思蜀」了。想订阅Poe会员的同学请移步:Poe开通教程。
从基准测试结果来看,本次更新的模型相较于去年11月份的版本有了全方位的改进和优化。


从今年3月开始,Claude 3 Opus强势登场,力压GPT-4成为竞技场榜首。同时,在Top 10榜单中Claude系列模型更是占据了四个席位,展现出了其强大的竞争力。但是这次GPT-4的升级之后,大模型专业评测机构lmsys.org从多个领域收集了超过8000张投票,投票结果再次将GPT-4送上了竞技排行榜榜首。

另外,研究表明GPT-4 Turbo 在英文能力上依然是遥遥领先的,但在中文能力上则弱于Claude-3 Opus。如果你的工作主要是以中文为主,那么使用Claude-3可能是个更好的选择。

目前GPT-4 Turbo仅限于ChatGPT Plus的用户,想升级到Plus服务可以按照Plus升级教程升级。若还没有GPT账号,那么请移步获取GPT账号Pronton版或获取GPT账号Gmail版。
原文链接:【重回王座】ChatGPT发布最新模型gpt-4-turbo-2024-04-09
相关文章:
【重回王座】ChatGPT发布最新模型gpt-4-turbo-2024-04-09
今天,新版GPT-4 Turbo再次在大型模型排行榜上荣登榜首,成功超越了此前领先的Claude 3 Opus。另外,新模型在处理长达64k的上下文时,性能竟能够与旧版在处理26k上下文时的表现相当。 目前GPT-4 Turbo仅限于ChatGPT Plus的用户&…...
NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(Spider vs BIRD)全面对比优劣分析[Text2SQL、Text2DSL]
NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(Spider vs BIRD)全面对比优劣分析[Text2SQL、Text2DSL] Text-to-SQL(或者Text2SQL),顾名思义就是把文本转化为SQL语言,更学术一…...
深度学习基础——计算量、参数量和推理时间
深度学习基础——计算量、参数量和推理时间 在深度学习中,计算量、参数量和推理时间是评估模型性能和效率的重要指标。本文将介绍这三个指标的定义、计算方法以及如何使用Python进行实现和可视化展示,以帮助读者更好地理解和评估深度学习模型。 1. 定义…...
另一棵树的子树
目录 题目 思路 代码1 :相同的树 代码二:解题 注意点 题目 给你两棵二叉树 root 和 subRoot 。检验 root 中是否包含和 subRoot 具有相同结构和节点值的子树。如果存在,返回 true ;否则,返回 false 。 二叉树 tr…...
【hive】单节点搭建hadoop和hive
一、背景 需要使用hive远程debug,尝试使用无hadoop部署hive方式一直失败,无果,还是使用有hadoop方式。最终查看linux内存占用6GB,还在后台运行docker的mysql(bitnami/mysql:8.0),基本满意。 版本选择: &a…...
Aurora 协议学习理解与应用——Aurora 8B10B协议学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 Aurora 8B10B协议学习之一,理解协议 概述8B10B数据发送和接收Symbol-Pairs传输调度用户PDU传输过程用户PDU接收过程 流控自然流量控制操作自然流量控制延迟自然流…...
Vue基础使用之V-Model绑定单选、复选、动态渲染选项的值
这里要说明一下,在v-model 绑定的值是id还是value是和<option>中的v-bind保持一致的,如第四个,如果是 <option :value"op[1]" 那v-model绑定的就是数组第二项的值2,4,6 如果是 <option :va…...
分析ARP解析过程
1、实验环境 主机A和主机B连接到交换机,并与一台路由器互连,如图7.17所示,路由器充当网关。 图7.17 实验案例一示意图 2、需求描述 查看 ARP 相关信息,熟悉在PC 和 Cisco 设备上的常用命令,设置主机A和主机B为同一个网段网关设置为路由接…...
为硬刚小米SU7,华为智界S7整出了「梅开二度」操作
如今国产中大型新能源轿车市场,在小米 SU7 加入后,可算彻底活了过来。 过去几年,咱们自主新能源品牌在 20-30 万元级轿车上发力明显不足,老牌车厂比亚迪汉几乎以一己之力扛起销量担当。 随着新能源汽车消费升级、竞争加剧&#x…...
408数据结构,怎么练习算法大题?
其实考研的数据结构算法题是有得分技巧的 得分要点 会写结构定义(没有就自己写上)写清楚解题的算法思想描述清楚算法实现最后写出时间和空间复杂度 以上这四步是完成一道算法题的基本步骤,也是其中得分的主要地方就是后面两步。但是前面两…...
imgcat 工具
如果经常在远程服务器或嵌入式设备中操作图片,要查看图片效果,就要先把图片dump到本地,比较麻烦。可以使用这个工具,直接在终端上显示。类似于这种效果。 imgcat 是一个终端工具,使用 iTerm2 内置的特性,允…...
Anaconda换清华源
1. 查看conda配置文件 sudo vim ~/.condarc2. 删除~/.condarc文件内容 使用vim中的dd命令 3. 打开并复制清华源的地址粘贴到~/.condarc文件中 https://mirrors4.tuna.tsinghua.edu.cn/help/anaconda/ channels:- defaults show_channel_urls: true default_channels:- https…...
react使用npm i @reduxjs/toolkit react-redux
npm i reduxjs/toolkit react-redux 创建一个 store文件夹,里面创建index.js文件和子模块文件夹 index,js文件写入以下代码 import {configureStore} from reduxjs/toolkit // 导入子模块 import counterReducer from ./modules/one import two from ./modules/tw…...
Nessus【部署 03】Docker部署漏洞扫描工具Nessus详细过程分享(下载+安装+注册+激活)文末福利
Docker部署漏洞扫描工具Nessus 1.安装2.配置2.1 添加用户2.2 获取Challenge code2.3 获取插件和许可证2.4 注册 3.使用4.进阶 整体流程: 1.安装 # 1.查询镜像 docker search nessus# 2.拉取镜像 docker pull tenableofficial/nessus# 3.启动镜像【挂载目录用于放置…...
2023年看雪安全技术峰会(公开)PPT合集(11份)
2023年看雪安全技术峰会(公开)PPT合集,共11份,供大家学习参阅。 1、MaginotDNS攻击:绕过DNS 缓存防御的马奇诺防线 2、从形式逻辑计算到神经计算:针对LLM角色扮演攻击的威胁分析以及防御实践 3、TheDog、0…...
Docker仅需3步搭建免费私有化的AI搜索引擎-FreeAskInternet
简介 FreeAskInternet 是一个完全免费、私有且本地运行的搜索引擎,并使用 LLM 生成答案,无需 GPU。用户可以提出问题,系统会进行多引擎搜索,并将搜索结果合并到ChatGPT3.5 LLM中,并根据搜索结果生成答案。 什么是 Fr…...
线程安全的单例模式
使用 synchronized 修饰 getInstance 方法 确保了只有一个线程可以同时访问 getInstance 方法。这意味着在任何时候只有一个线程可以执行 getInstance() 方法,从而避免了多个线程同时创建多个实例的情况,因此是线程安全的。 public class ClientUtil {…...
OpenHarmony实战开发-Grid和List内拖拽交换子组件位置。
介绍 本示例分别通过onItemDrop()和onDrop()回调,实现子组件在Grid和List中的子组件位置交换。 效果图预览 使用说明: 拖拽Grid中子组件,到目标Grid子组件位置,进行两者位置互换。拖拽List中子组件,到目标List子组件…...
设计模式:时序图
设计模式:时序图 设计模式:时序图时序图元素(Sequence Diagram Elements)角色(Actor)对象(Object)生命线(Lifeline)控制焦点(Focus of Control&am…...
前端性能监控(面试常见)
1. 用户体验优化 2. Web Vitals提取了几个核心网络指标 哇一头死 FCL 三大指标 FID被 INP干点 Largest Contentful Paint (LCP):最大内容绘制 衡量加载性能。 为了提供良好的用户体验,LCP 必须在网页首次开始加载后的 2.5 秒内发生。Interaction to Ne…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...
【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
实战设计模式之模板方法模式
概述 模板方法模式定义了一个操作中的算法骨架,并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下,重新定义算法中的某些步骤。简单来说,就是在一个方法中定义了要执行的步骤顺序或算法框架,但允许子类…...
