当前位置: 首页 > news >正文

软件杯 深度学习图像修复算法 - opencv python 机器视觉

文章目录

  • 0 前言
  • 2 什么是图像内容填充修复
  • 3 原理分析
    • 3.1 第一步:将图像理解为一个概率分布的样本
    • 3.2 补全图像
  • 3.3 快速生成假图像
    • 3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构
    • 3.5 使用G(z)生成伪图像
  • 4 在Tensorflow上构建DCGANs
  • 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学图像修复算法

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 什么是图像内容填充修复

内容识别填充(译注: Content-aware fill ,是 photoshop
的一个功能)是一个强大的工具,设计师和摄影师可以用它来填充图片中不想要的部分或者缺失的部分。在填充图片的缺失或损坏的部分时,图像补全和修复是两种密切相关的技术。有很多方法可以实现内容识别填充,图像补全和修复。

  • 首先我们将图像理解为一个概率分布的样本。
  • 基于这种理解,学*如何生成伪图片。
  • 然后我们找到最适合填充回去的伪图片。

在这里插入图片描述

自动删除不需要的部分(海滩上的人)
在这里插入图片描述

最经典的人脸补充

补充前:

在这里插入图片描述

补充后:
在这里插入图片描述

3 原理分析

3.1 第一步:将图像理解为一个概率分布的样本

你是怎样补全缺失信息的呢?

在上面的例子中,想象你正在构造一个可以填充缺失部分的系统。你会怎么做呢?你觉得人类大脑是怎么做的呢?你使用了什么样的信息呢?

在博文中,我们会关注两种信息:

语境信息:你可以通过周围的像素来推测缺失像素的信息。

感知信息:你会用“正常”的部分来填充,比如你在现实生活中或其它图片上看到的样子。
两者都很重要。没有语境信息,你怎么知道填充哪一个进去?没有感知信息,通过同样的上下文可以生成无数种可能。有些机器学*系统看起来“正常”的图片,人类看起来可能不太正常。
如果有一种确切的、直观的算法,可以捕获前文图像补全步骤介绍中提到的两种属性,那就再好不过了。对于特定的情况,构造这样的算法是可行的。但是没有一般的方法。目前最好的解决方案是通过统计和机器学习来得到一个类似的技术。

在这里插入图片描述

从这个分布中采样,就可以得到一些数据。需要搞清楚的是PDF和样本之间的联系。

在这里插入图片描述

从正态分布中的采样

在这里插入图片描述
2维图像的PDF和采样。 PDF 用等高线图表示,样本点画在上面。

3.2 补全图像

首先考虑多变量正态分布, 以求得到一些启发。给定 x=1 , 那么 y 最可能的值是什么?我们可以固定x的值,然后找到使PDF最大的 y。
在这里插入图片描述
在多维正态分布中,给定x,得到最大可能的y

这个概念可以很自然地推广到图像概率分布。我们已知一些值,希望补全缺失值。这可以简单理解成一个最大化问题。我们搜索所有可能的缺失值,用于补全的图像就是可能性最大的值。
从正态分布的样本来看,只通过样本,我们就可以得出PDF。只需挑选你喜欢的 统计模型, 然后拟合数据即可。
然而,我们实际上并没有使用这种方法。对于简单分布来说,PDF很容易得出来。但是对于更复杂的图像分布来说,就十分困难,难以处理。之所以复杂,一部分原因是复杂的条件依赖:一个像素的值依赖于图像中其它像素的值。另外,最大化一个一般的PDF是一个非常困难和棘手的非凸优化问题。

3.3 快速生成假图像

在未知概率分布情况下,学习生成新样本

除了学 如何计算PDF之外,统计学中另一个成熟的想法是学 怎样用 生成模型
生成新的(随机)样本。生成模型一般很难训练和处理,但是后来深度学*社区在这个领域有了一个惊人的突破。Yann LeCun 在这篇 Quora
回答中对如何进行生成模型的训练进行了一番精彩的论述,并将它称为机器学习领域10年来最有意思的想法。

3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构

使用微步长卷积,对图像进行上采样

在这里插入图片描述
现在我们有了微步长卷积结构,可以得到G(z)的表达,以一个向量z∼pz 作为输入,输出一张 64x64x3 的RGB图像。

在这里插入图片描述

3.5 使用G(z)生成伪图像

基于DCGAN的人脸代数运算 DCGAN论文 。

在这里插入图片描述

4 在Tensorflow上构建DCGANs

部分代码:

def generator(self, z):self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*8*4*4, 'g_h0_lin', with_w=True)self.h0 = tf.reshape(self.z_, [-1, 4, 4, self.gf_dim * 8])h0 = tf.nn.relu(self.g_bn0(self.h0))self.h1, self.h1_w, self.h1_b = conv2d_transpose(h0,[self.batch_size, 8, 8, self.gf_dim*4], name='g_h1', with_w=True)h1 = tf.nn.relu(self.g_bn1(self.h1))h2, self.h2_w, self.h2_b = conv2d_transpose(h1,[self.batch_size, 16, 16, self.gf_dim*2], name='g_h2', with_w=True)h2 = tf.nn.relu(self.g_bn2(h2))h3, self.h3_w, self.h3_b = conv2d_transpose(h2,[self.batch_size, 32, 32, self.gf_dim*1], name='g_h3', with_w=True)h3 = tf.nn.relu(self.g_bn3(h3))h4, self.h4_w, self.h4_b = conv2d_transpose(h3,[self.batch_size, 64, 64, 3], name='g_h4', with_w=True)return tf.nn.tanh(h4)def discriminator(self, image, reuse=False):if reuse:tf.get_variable_scope().reuse_variables()h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))h4 = linear(tf.reshape(h3, [-1, 8192]), 1, 'd_h3_lin')return tf.nn.sigmoid(h4), h4

当我们初始化这个类的时候,将要用到这两个函数来构建模型。我们需要两个判别器,它们共享(复用)参数。一个用于来自数据分布的小批图像,另一个用于生成器生成的小批图像。

self.G = self.generator(self.z)
self.D, self.D_logits = self.discriminator(self.images)
self.D_, self.D_logits_ = self.discriminator(self.G, reuse=True)

接下来,我们定义损失函数。这里我们不用求和,而是用D的预测值和真实值之间的交叉熵(cross
entropy),因为它更好用。判别器希望对所有“真”数据的预测都是1,对所有生成器生成的“伪”数据的预测都是0。生成器希望判别器对两者的预测都是1 。

self.d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits,tf.ones_like(self.D)))
self.d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,tf.zeros_like(self.D_)))
self.g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,tf.ones_like(self.D_)))
self.d_loss = self.d_loss_real + self.d_loss_fake

下面我们遍历数据。每一次迭代,我们采样一个小批数据,然后使用优化器来更新网络。有趣的是,如果G只更新一次,鉴别器的损失不会变成0。另外,我认为最后调用
d_loss_fake 和 d_loss_real 进行了一些不必要的计算, 因为这些值在 d_optim 和 g_optim 中已经计算过了。
作为Tensorflow 的一个联系,你可以试着优化这一部分,并发送PR到原始的repo。

for epoch in xrange(config.epoch):...for idx in xrange(0, batch_idxs):batch_images = ...batch_z = np.random.uniform(-1, 1, [config.batch_size, self.z_dim]) \.astype(np.float32)# Update D network_, summary_str = self.sess.run([d_optim, self.d_sum],feed_dict={ self.images: batch_images, self.z: batch_z })# Update G network_, summary_str = self.sess.run([g_optim, self.g_sum],feed_dict={ self.z: batch_z })# Run g_optim twice to make sure that d_loss does not go to zero (different from paper)_, summary_str = self.sess.run([g_optim, self.g_sum],feed_dict={ self.z: batch_z })errD_fake = self.d_loss_fake.eval({self.z: batch_z})errD_real = self.d_loss_real.eval({self.images: batch_images})errG = self.g_loss.eval({self.z: batch_z})

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

软件杯 深度学习图像修复算法 - opencv python 机器视觉

文章目录 0 前言2 什么是图像内容填充修复3 原理分析3.1 第一步:将图像理解为一个概率分布的样本3.2 补全图像 3.3 快速生成假图像3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构3.5 使用G(z)生成伪图像 4 在Tensorflow上构建DCGANs最后 0 前言 &#…...

java日志log4j使用

1、导入jar包 log4j-1.2.17.jar log4j-api-2.0-rc1.jar log4j-core-2.0-rc1.jar https://download.csdn.net/download/weixin_44201223/89148839 所需jar包下载地址 2、创建 log4j.properties src 下创建 log4j.properties (路径和名称都不允许改变),放置 src 下…...

探索Python爬虫利器:Scrapy框架解析与实战

探索Python爬虫利器:Scrapy框架解析与实战 在当今信息时代,数据的价值不言而喻。而Python爬虫技术,作为获取网络数据的重要手段,已经成为了许多数据分析师、开发者和研究者必备的技能。本文将为您详细介绍Python爬虫技术中的利器—…...

Rust腐蚀服务器修改背景和logo图片操作方法

Rust腐蚀服务器修改背景和logo图片操作方法 大家好我是艾西一个做服务器租用的网络架构师。在我们自己搭建的rust服务器游戏设定以及玩法都是完全按照自己的想法设定的,如果你是一个社区服那么对于进游戏的主页以及Logo肯定会有自己的想法。这个东西可以理解为做一…...

【架构-15】NoSQL数据库

NoSQL(Not Only SQL)数据库是一类非关系型数据库,与传统的关系型数据库(如MySQL、Oracle)相对而言。NoSQL数据库的设计目标是针对大规模数据和高并发访问的需求,具有高可扩展性、高性能和灵活的数据模型。 …...

中国人工智能产业年会智能交通与自动驾驶专题全景扫描

中国人工智能产业年会(CAIIAC)是中国人工智能技术发展和应用的重要展示平台,不仅关注创新,还涵盖了市场和监管方面的内容,对于促进人工智能领域的发展起到了重要作用。年会汇集了来自学术界、工业界和政府的专家&#…...

SpringBoot相关知识点总结

1 SpringBoot的目的 简化开发,开箱即用。 2 Spring Boot Starter Spring Boot Starter 是 Spring Boot 中的一个重要概念,它是一种提供依赖项的方式,可以帮助开发人员快速集成各种第三方库和框架。Spring Boot Starter 的目的是简化 Sprin…...

【QT】关于qcheckbox常用的三个信号,{sstateChanged(int) clicked() clicked(bool)}达成巧用

在 Qt 中,QCheckBox 是一个提供复选框功能的小部件,允许用户选择和取消选择一个或多个选项。QCheckBox 提供了几种信号来响应用户的交互,其中 stateChanged(int), clicked(), 和 clicked(bool) 是常用的。下面解释这些信号的意义及其用法。 …...

在线音乐网站的设计与实现

在线音乐网站的设计与实现 摘 要 在社会和互联网的快速发展中,音乐在人们生活中也产生着很大的作用。音乐可以使我们紧张的神经得到放松,有助于开启我们的智慧,可以辅助治疗,达到药物无法达到的效果,所以利用现代科学…...

【电路笔记】-数字缓冲器

数字缓冲器 文章目录 数字缓冲器1、概述2、单输入数字缓冲器3、三态缓冲器3.1 有效“高”三态缓冲器3.2 有效“高”反相三态缓冲器3.3 有效“低”三态缓冲器3.4 有效“低”反相三态缓冲器4、三态缓冲器控制数字缓冲器和三态缓冲器可以在数字电路中提供电流放大以驱动输出负载。…...

Opencv | 基于ndarray的基本操作

这里写目录标题 一. Opencv 基于ndarray的基本操作1. 浅拷贝2. np.copy ( ) 深拷贝3. 堆叠3.1 np.vstack ( ) 垂直方向堆叠3.2 np.hstack ( ) 水平方向堆叠 4. numpy创建图像5 np.transpose ( ) 更改维度顺序6. cv.resize ( ) 放大缩小7. np.clip ( ) 一. Opencv 基于ndarray的…...

【大语言模型】应用:10分钟实现搜索引擎

本文利用20Newsgroup这个数据集作为Corpus(语料库),用户可以通过搜索关键字来进行查询关联度最高的News,实现对文本的搜索引擎: 1. 导入数据集 from sklearn.datasets import fetch_20newsgroupsnewsgroups fetch_20newsgroups()print(fNu…...

UT单元测试

Tips:在使用时一定要注意版本适配性问题 一、Mockito 1.1 Mock的使用 Mock 的中文译为仿制的,模拟的,虚假的。对于测试框架来说,即构造出一个模拟/虚假的对象,使我们的测试能顺利进行下去。 Mock 测试就是在测试过程…...

leetcode-合并两个有序链表

目录 题目 图解 方法一 方法二 代码(解析在注释中) 方法一 ​编辑方法二 题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1: 输入:l1 [1,2,4], l2 [1,3,4] 输出:[1,1…...

006Node.js cnpm的安装

百度搜索 cnpm,进入npmmirror 镜像站https://npmmirror.com/ cmd窗口输入 npm install -g cnpm --registryhttps://registry.npmmirror.com...

web server apache tomcat11-01-官方文档入门介绍

前言 整理这个官方翻译的系列,原因是网上大部分的 tomcat 版本比较旧,此版本为 v11 最新的版本。 开源项目 同时也为从零手写实现 tomcat 提供一些基础和特性的思路。 minicat 别称【嗅虎】心有猛虎,轻嗅蔷薇。 系列文章 web server apac…...

java的总结

由于最近已经开始做项目了,所以对java的基础知识的学习都是一个离散化的状态没有一个很系统的学习,都是哪里不会就去学哪里。 先来讲一下前后端的区别吧 在我的理解前端就是:客户端在前端进行点击输入数据,前端将这些数据整合起来…...

解决npm run dev跑项目,发现node版本不匹配,怎么跑起来?【已解决】

首先问题点就是我们npm run dev 运行项目的时候发现出错,跑不起来,类型下面这种 这里的出错的原因在于我们的node版本跟项目的版本不匹配 解决办法 我这里的问题是我的版本是node14的,然后项目需要node20的,执行下面的就可以正…...

flood_fill 算法|图形渲染

flood fill 算法常常用来找极大连通子图,这是必须掌握的基本算法之一! 图形渲染 算法原理 我们可以利用DFS遍历数组把首个数组的值记为color,然后上下左右四个方向遍历二维数组数组如果其他方块的值不等于color 或者越界就剪枝 return 代码…...

Promise简单概述

一. Promise是什么? 理解 1.抽象表达: Promise是一门新的技术(ES6规范) Promise是JS中进行异步编程的新解决方案(旧方案是单纯使用回调函数) 异步编程:包括fs文件操作,数据库操作(Mysql),AJAX,定时器 2.具…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...