竞赛 基于GRU的 电影评论情感分析 - python 深度学习 情感分类
文章目录
- 1 前言
- 1.1 项目介绍
- 2 情感分类介绍
- 3 数据集
- 4 实现
- 4.1 数据预处理
- 4.2 构建网络
- 4.3 训练模型
- 4.4 模型评估
- 4.5 模型预测
- 5 最后
1 前言
🔥 优质竞赛项目系列,今天要分享的是
基于GRU的 电影评论情感分析
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1.1 项目介绍
其实,很明显这个项目和微博谣言检测是一样的,也是个二分类的问题,因此,我们可以用到学长之前提到的各种方法,即:
朴素贝叶斯或者逻辑回归以及支持向量机都可以解决这个问题。
另外在深度学习中,我们可以用CNN-Text或者RNN以及LSTM等模型最好。
当然在构建网络中也相对简单,相对而言,LSTM就比较复杂了,为了让不同层次的同学们可以接受,学长就用了相对简单的GRU模型。
如果大家想了解LSTM。以后,学长会给大家详细介绍。
2 情感分类介绍
其实情感分析在自然语言处理中,情感分析一般指判断一段文本所表达的情绪状态,属于文本分类问题。一般而言:情绪类别:正面/负面。当然,这就是为什么本人在前面提到情感分析实际上也是二分类问题的原因。
3 数据集
学长本次使用的是非常典型的IMDB数据集。
该数据集包含来自互联网的50000条严重两极分化的评论,该数据被分为用于训练的25000条评论和用于测试的25000条评论,训练集和测试集都包含50%的正面评价和50%的负面评价。该数据集已经经过预处理:评论(单词序列)已经被转换为整数序列,其中每个整数代表字典中的某个单词。
查看其数据集的文件夹:这是train和test文件夹。

接下来就是以train文件夹介绍里面的内容

然后就是以neg文件夹介绍里面的内容,里面会有若干的text文件:

4 实现
4.1 数据预处理
#导入必要的包import zipfileimport osimport ioimport randomimport jsonimport matplotlib.pyplot as pltimport numpy as npimport paddleimport paddle.fluid as fluidfrom paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Embeddingfrom paddle.fluid.dygraph.base import to_variablefrom paddle.fluid.dygraph import GRUUnitimport paddle.dataset.imdb as imdb#加载字典def load_vocab():vocab = imdb.word_dict()return vocab#定义数据生成器class SentaProcessor(object):def __init__(self):self.vocab = load_vocab()def data_generator(self, batch_size, phase='train'):if phase == "train":return paddle.batch(paddle.reader.shuffle(imdb.train(self.vocab),25000), batch_size, drop_last=True)elif phase == "eval":return paddle.batch(imdb.test(self.vocab), batch_size,drop_last=True)else:raise ValueError("Unknown phase, which should be in ['train', 'eval']")
步骤
-
首先导入必要的第三方库
-
接下来就是数据预处理,需要注意的是:数据是以数据标签的方式表示一个句子,因此,每个句子都是以一串整数来表示的,每个数字都是对应一个单词。当然,数据集就会有一个数据集字典,这个字典是训练数据中出现单词对应的数字标签。
4.2 构建网络
这次的GRU模型分为以下的几个步骤
- 定义网络
- 定义损失函数
- 定义优化算法
具体实现如下
#定义动态GRU
class DynamicGRU(fluid.dygraph.Layer):
def init(self,
size,
param_attr=None,
bias_attr=None,
is_reverse=False,
gate_activation=‘sigmoid’,
candidate_activation=‘relu’,
h_0=None,
origin_mode=False,
):
super(DynamicGRU, self).init()
self.gru_unit = GRUUnit(
size * 3,
param_attr=param_attr,
bias_attr=bias_attr,
activation=candidate_activation,
gate_activation=gate_activation,
origin_mode=origin_mode)
self.size = size
self.h_0 = h_0
self.is_reverse = is_reverse
def forward(self, inputs):
hidden = self.h_0
res = []
for i in range(inputs.shape[1]):
if self.is_reverse:
i = inputs.shape[1] - 1 - i
input_ = inputs[ :, i:i+1, :]
input_ = fluid.layers.reshape(input_, [-1, input_.shape[2]], inplace=False)
hidden, reset, gate = self.gru_unit(input_, hidden)
hidden_ = fluid.layers.reshape(hidden, [-1, 1, hidden.shape[1]], inplace=False)
res.append(hidden_)
if self.is_reverse:
res = res[::-1]
res = fluid.layers.concat(res, axis=1)
return res
class GRU(fluid.dygraph.Layer):def __init__(self):super(GRU, self).__init__()self.dict_dim = train_parameters["vocab_size"]self.emb_dim = 128self.hid_dim = 128self.fc_hid_dim = 96self.class_dim = 2self.batch_size = train_parameters["batch_size"]self.seq_len = train_parameters["padding_size"]self.embedding = Embedding(size=[self.dict_dim + 1, self.emb_dim],dtype='float32',param_attr=fluid.ParamAttr(learning_rate=30),is_sparse=False)h_0 = np.zeros((self.batch_size, self.hid_dim), dtype="float32")h_0 = to_variable(h_0)self._fc1 = Linear(input_dim=self.hid_dim, output_dim=self.hid_dim*3)self._fc2 = Linear(input_dim=self.hid_dim, output_dim=self.fc_hid_dim, act="relu")self._fc_prediction = Linear(input_dim=self.fc_hid_dim,output_dim=self.class_dim,act="softmax")self._gru = DynamicGRU(size=self.hid_dim, h_0=h_0)def forward(self, inputs, label=None):emb = self.embedding(inputs)o_np_mask =to_variable(inputs.numpy().reshape(-1,1) != self.dict_dim).astype('float32')mask_emb = fluid.layers.expand(to_variable(o_np_mask), [1, self.hid_dim])emb = emb * mask_embemb = fluid.layers.reshape(emb, shape=[self.batch_size, -1, self.hid_dim])fc_1 = self._fc1(emb)gru_hidden = self._gru(fc_1)gru_hidden = fluid.layers.reduce_max(gru_hidden, dim=1)tanh_1 = fluid.layers.tanh(gru_hidden)fc_2 = self._fc2(tanh_1)prediction = self._fc_prediction(fc_2)if label is not None:acc = fluid.layers.accuracy(prediction, label=label)return prediction, accelse:return prediction
4.3 训练模型
def train():
with fluid.dygraph.guard(place = fluid.CUDAPlace(0)): # # 因为要进行很大规模的训练,因此我们用的是GPU,如果没有安装GPU的可以使用下面一句,把这句代码注释掉即可
# with fluid.dygraph.guard(place = fluid.CPUPlace()):
processor = SentaProcessor()train_data_generator = processor.data_generator(batch_size=train_parameters["batch_size"], phase='train')model = GRU()sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=train_parameters["lr"],parameter_list=model.parameters())steps = 0Iters, total_loss, total_acc = [], [], []for eop in range(train_parameters["epoch"]):for batch_id, data in enumerate(train_data_generator()):steps += 1doc = to_variable(np.array([np.pad(x[0][0:train_parameters["padding_size"]], (0, train_parameters["padding_size"] - len(x[0][0:train_parameters["padding_size"]])),'constant',constant_values=(train_parameters["vocab_size"]))for x in data]).astype('int64').reshape(-1))label = to_variable(np.array([x[1] for x in data]).astype('int64').reshape(train_parameters["batch_size"], 1))model.train()prediction, acc = model(doc, label)loss = fluid.layers.cross_entropy(prediction, label)avg_loss = fluid.layers.mean(loss)avg_loss.backward()sgd_optimizer.minimize(avg_loss)model.clear_gradients()if steps % train_parameters["skip_steps"] == 0:Iters.append(steps)total_loss.append(avg_loss.numpy()[0])total_acc.append(acc.numpy()[0])print("step: %d, ave loss: %f, ave acc: %f" %(steps,avg_loss.numpy(),acc.numpy()))if steps % train_parameters["save_steps"] == 0:save_path = train_parameters["checkpoints"]+"/"+"save_dir_" + str(steps)print('save model to: ' + save_path)fluid.dygraph.save_dygraph(model.state_dict(),save_path)draw_train_process(Iters, total_loss, total_acc)


4.4 模型评估

结果还可以,这里说明的是,刚开始的模型训练评估不可能这么好,很明显是过拟合的问题,这就需要我们调整我们的epoch、batchsize、激活函数的选择以及优化器、学习率等各种参数,通过不断的调试、训练最好可以得到不错的结果,但是,如果还要更好的模型效果,其实可以将GRU模型换为更为合适的RNN中的LSTM以及bi-
LSTM模型会好很多。
4.5 模型预测
train_parameters[“batch_size”] = 1
with fluid.dygraph.guard(place = fluid.CUDAPlace(0)):sentences = 'this is a great movie'data = load_data(sentences)print(sentences)print(data)data_np = np.array(data)data_np = np.array(np.pad(data_np,(0,150-len(data_np)),"constant",constant_values =train_parameters["vocab_size"])).astype('int64').reshape(-1)infer_np_doc = to_variable(data_np)model_infer = GRU()model, _ = fluid.load_dygraph("data/save_dir_750.pdparams")model_infer.load_dict(model)model_infer.eval()result = model_infer(infer_np_doc)print('预测结果为:正面概率为:%0.5f,负面概率为:%0.5f' % (result.numpy()[0][0],result.numpy()[0][1]))

训练的结果还是挺满意的,到此为止,我们的本次项目实验到此结束。
5 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
竞赛 基于GRU的 电影评论情感分析 - python 深度学习 情感分类
文章目录 1 前言1.1 项目介绍 2 情感分类介绍3 数据集4 实现4.1 数据预处理4.2 构建网络4.3 训练模型4.4 模型评估4.5 模型预测 5 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 基于GRU的 电影评论情感分析 该项目较为新颖,适合作为竞…...
软件杯 深度学习图像修复算法 - opencv python 机器视觉
文章目录 0 前言2 什么是图像内容填充修复3 原理分析3.1 第一步:将图像理解为一个概率分布的样本3.2 补全图像 3.3 快速生成假图像3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构3.5 使用G(z)生成伪图像 4 在Tensorflow上构建DCGANs最后 0 前言 &#…...
java日志log4j使用
1、导入jar包 log4j-1.2.17.jar log4j-api-2.0-rc1.jar log4j-core-2.0-rc1.jar https://download.csdn.net/download/weixin_44201223/89148839 所需jar包下载地址 2、创建 log4j.properties src 下创建 log4j.properties (路径和名称都不允许改变),放置 src 下…...
探索Python爬虫利器:Scrapy框架解析与实战
探索Python爬虫利器:Scrapy框架解析与实战 在当今信息时代,数据的价值不言而喻。而Python爬虫技术,作为获取网络数据的重要手段,已经成为了许多数据分析师、开发者和研究者必备的技能。本文将为您详细介绍Python爬虫技术中的利器—…...
Rust腐蚀服务器修改背景和logo图片操作方法
Rust腐蚀服务器修改背景和logo图片操作方法 大家好我是艾西一个做服务器租用的网络架构师。在我们自己搭建的rust服务器游戏设定以及玩法都是完全按照自己的想法设定的,如果你是一个社区服那么对于进游戏的主页以及Logo肯定会有自己的想法。这个东西可以理解为做一…...
【架构-15】NoSQL数据库
NoSQL(Not Only SQL)数据库是一类非关系型数据库,与传统的关系型数据库(如MySQL、Oracle)相对而言。NoSQL数据库的设计目标是针对大规模数据和高并发访问的需求,具有高可扩展性、高性能和灵活的数据模型。 …...
中国人工智能产业年会智能交通与自动驾驶专题全景扫描
中国人工智能产业年会(CAIIAC)是中国人工智能技术发展和应用的重要展示平台,不仅关注创新,还涵盖了市场和监管方面的内容,对于促进人工智能领域的发展起到了重要作用。年会汇集了来自学术界、工业界和政府的专家&#…...
SpringBoot相关知识点总结
1 SpringBoot的目的 简化开发,开箱即用。 2 Spring Boot Starter Spring Boot Starter 是 Spring Boot 中的一个重要概念,它是一种提供依赖项的方式,可以帮助开发人员快速集成各种第三方库和框架。Spring Boot Starter 的目的是简化 Sprin…...
【QT】关于qcheckbox常用的三个信号,{sstateChanged(int) clicked() clicked(bool)}达成巧用
在 Qt 中,QCheckBox 是一个提供复选框功能的小部件,允许用户选择和取消选择一个或多个选项。QCheckBox 提供了几种信号来响应用户的交互,其中 stateChanged(int), clicked(), 和 clicked(bool) 是常用的。下面解释这些信号的意义及其用法。 …...
在线音乐网站的设计与实现
在线音乐网站的设计与实现 摘 要 在社会和互联网的快速发展中,音乐在人们生活中也产生着很大的作用。音乐可以使我们紧张的神经得到放松,有助于开启我们的智慧,可以辅助治疗,达到药物无法达到的效果,所以利用现代科学…...
【电路笔记】-数字缓冲器
数字缓冲器 文章目录 数字缓冲器1、概述2、单输入数字缓冲器3、三态缓冲器3.1 有效“高”三态缓冲器3.2 有效“高”反相三态缓冲器3.3 有效“低”三态缓冲器3.4 有效“低”反相三态缓冲器4、三态缓冲器控制数字缓冲器和三态缓冲器可以在数字电路中提供电流放大以驱动输出负载。…...
Opencv | 基于ndarray的基本操作
这里写目录标题 一. Opencv 基于ndarray的基本操作1. 浅拷贝2. np.copy ( ) 深拷贝3. 堆叠3.1 np.vstack ( ) 垂直方向堆叠3.2 np.hstack ( ) 水平方向堆叠 4. numpy创建图像5 np.transpose ( ) 更改维度顺序6. cv.resize ( ) 放大缩小7. np.clip ( ) 一. Opencv 基于ndarray的…...
【大语言模型】应用:10分钟实现搜索引擎
本文利用20Newsgroup这个数据集作为Corpus(语料库),用户可以通过搜索关键字来进行查询关联度最高的News,实现对文本的搜索引擎: 1. 导入数据集 from sklearn.datasets import fetch_20newsgroupsnewsgroups fetch_20newsgroups()print(fNu…...
UT单元测试
Tips:在使用时一定要注意版本适配性问题 一、Mockito 1.1 Mock的使用 Mock 的中文译为仿制的,模拟的,虚假的。对于测试框架来说,即构造出一个模拟/虚假的对象,使我们的测试能顺利进行下去。 Mock 测试就是在测试过程…...
leetcode-合并两个有序链表
目录 题目 图解 方法一 方法二 代码(解析在注释中) 方法一 编辑方法二 题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1: 输入:l1 [1,2,4], l2 [1,3,4] 输出:[1,1…...
006Node.js cnpm的安装
百度搜索 cnpm,进入npmmirror 镜像站https://npmmirror.com/ cmd窗口输入 npm install -g cnpm --registryhttps://registry.npmmirror.com...
web server apache tomcat11-01-官方文档入门介绍
前言 整理这个官方翻译的系列,原因是网上大部分的 tomcat 版本比较旧,此版本为 v11 最新的版本。 开源项目 同时也为从零手写实现 tomcat 提供一些基础和特性的思路。 minicat 别称【嗅虎】心有猛虎,轻嗅蔷薇。 系列文章 web server apac…...
java的总结
由于最近已经开始做项目了,所以对java的基础知识的学习都是一个离散化的状态没有一个很系统的学习,都是哪里不会就去学哪里。 先来讲一下前后端的区别吧 在我的理解前端就是:客户端在前端进行点击输入数据,前端将这些数据整合起来…...
解决npm run dev跑项目,发现node版本不匹配,怎么跑起来?【已解决】
首先问题点就是我们npm run dev 运行项目的时候发现出错,跑不起来,类型下面这种 这里的出错的原因在于我们的node版本跟项目的版本不匹配 解决办法 我这里的问题是我的版本是node14的,然后项目需要node20的,执行下面的就可以正…...
flood_fill 算法|图形渲染
flood fill 算法常常用来找极大连通子图,这是必须掌握的基本算法之一! 图形渲染 算法原理 我们可以利用DFS遍历数组把首个数组的值记为color,然后上下左右四个方向遍历二维数组数组如果其他方块的值不等于color 或者越界就剪枝 return 代码…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
掌握 HTTP 请求:理解 cURL GET 语法
cURL 是一个强大的命令行工具,用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中,cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...
