leetcode
找到字符串中所有字母异位词
给定两个字符串 s 和 p,找到 s 中所有 p 的 异位词 的子串,返回这些子串的起始索引。不考虑答案输出的顺序。
异位词 指由相同字母重排列形成的字符串(包括相同的字符串)
示例 1:
输入: s = "cbaebabacd", p = "abc"
输出: [0,6]
解释:
起始索引等于 0 的子串是 "cba", 它是 "abc" 的异位词。
起始索引等于 6 的子串是 "bac", 它是 "abc" 的异位词。
示例 2:
输入: s = "abab", p = "ab"
输出: [0,1,2]
解释:
起始索引等于 0 的子串是 "ab", 它是 "ab" 的异位词。
起始索引等于 1 的子串是 "ba", 它是 "ab" 的异位词。
起始索引等于 2 的子串是 "ab", 它是 "ab" 的异位词。
提示:
1 <= s.length, p.length <= 3 * 10^4s和p仅包含小写字母
超时代码
用滑动窗口去遍历整个字符串,每次遍历到一个字串就sort一次,再与sort好的字符串 p 比较,当字符串长度过长时,这个做法肯定会超时.
class Solution {
public:vector<int> findAnagrams(string s, string p) {vector<int> ans;int len_s = s.length(); // s的长度int len_p = p.length(); // p的长度sort(p.begin(), p.end()); // 对p进行排序int i = 0, j = i + len_p - 1; // 滑动窗口while (j < len_s) {// 将滑动窗口中的字串取出,存放到tmp中string tmp = "";tmp.append(s.substr(i, len_p));sort(tmp.begin(), tmp.end());if (!tmp.compare(p)) { // 若两个字符串相等ans.push_back(i);}i++, j++; // 往后移动滑动窗口}return ans;}
};
正确做法
同样的滑动窗口思路,但是判断字符串是否是字母异位词,改用长度为26的数组来记录遍历到的字串中字母出现的次数与 p 字符串中字母出现的次数,若两者相同,则是字母异位词。代码如下
class Solution {
public:vector<int> findAnagrams(string s, string p) {int len_s = s.length(); // s的长度int len_p = p.length(); // p的长度if (len_s < len_p) return vector<int>();vector<int> ans;vector<int> sCNT(26); // 记录s串中字母出现次数vector<int> pCNT(26); // 记录p串中字母出现次数for (int i = 0; i < len_p; ++i) {++sCNT[s[i] - 'a'];++pCNT[p[i] - 'a'];}// 0位置开始的滑动窗口中的字符串与目标字符串互为字母异位if (sCNT == pCNT) ans.push_back(0); for (int i = 0; i < len_s - len_p; ++i) {// 移动窗口--sCNT[s[i] - 'a'];++sCNT[s[i + len_p] - 'a'];if (sCNT == pCNT) {ans.push_back(i + 1);}}return ans;}
};
相关文章:
leetcode
找到字符串中所有字母异位词 给定两个字符串 s 和 p,找到 s 中所有 p 的 异位词 的子串,返回这些子串的起始索引。不考虑答案输出的顺序。 异位词 指由相同字母重排列形成的字符串(包括相同的字符串) 示例 1: 输入: s "…...
Unity DOTS《群体战斗弹幕游戏》核心技术分析之3D角色动画
最近DOTS发布了正式的版本, 我们来分享现在流行基于群体战斗的弹幕类游戏,实现的核心原理。今天给大家介绍大规模战斗群体3D角色的动画如何来实现。 DOTS 对角色动画支持的局限性 截止到Unity DOTS发布的版本1.0.16,目前还是无法很好的支持3D角色动画。在DOTS 的ba…...
react异步组件如何定义使用 标准使用方法
目录 默认导出和命名导出的格式 默认导出的组件 使用方式 命名导出的组件 使用方式 默认导出和命名导出的格式 默认导出: // person.js const person {name: Alice,age: 30 };export default person;命名导出: // math.js export const add (a, b) > a b; exp…...
React + Ts + Vite + Antd 项目搭建
1、创建项目 npm create vite 项目名称 选择 react 选择 typescript 关闭严格模式 建议关闭严格模式,因为不能自动检测副作用,有意双重调用。将严格模式注释即可。 2、配置sass npm install sass 更换所有后缀css为sass vite.config.ts中注册全局样式 /…...
js爬虫puppeteer库 解决网页动态渲染无法爬取
我们爬取这个网址上面的股票实时部分宇通客车(600066)_股票价格_行情_走势图—东方财富网 我们用正常的方法爬取会发现爬取不下来,是因为这个网页这里是实时渲染的,我们直接通过网址接口访问这里还没有渲染出来 于是我们可以通过下面的代码来进行爬取: …...
代码随想录:二叉树5
目录 102.二叉树的层序遍历 题目 代码(队列实现) 107.二叉树的层序遍历II 题目 代码 199.二叉树的右视图 题目 代码 637.二叉树的层平均值 题目 代码 102.二叉树的层序遍历 题目 给你二叉树的根节点 root ,返回其节点值的 层序遍…...
Tomcat 获取客户端真实IP X-Forwarded-For
Tomcat 获取客户端真实IP X-Forwarded-For 代码实现: 在Host标签下面添加代码: <Valve className"org.apache.catalina.valves.RemoteIpValve" remoteIpHeader"x-forwarded-for" remoteIpProxiesHeader"x-forwarded-by&q…...
记录PS学习查漏补缺
PS学习 PS学习理论快捷键抠图PS专属多软件通用快捷键 PS学习 理论 JPEG (不带透明通道) PNG (带透明通道) 快捷键 抠图 抠图方式 魔棒工具 反选选中区域 CtrlShiftI(反选) 钢笔抠图注意事项 按着Ctrl单击节点 会出现当前节…...
Kafka 架构深入探索
目录 一、Kafka 工作流程及文件存储机制 二、数据可靠性保证 三 、数据一致性问题 3.1follower 故障 3.2leader 故障 四、ack 应答机制 五、部署FilebeatKafkaELK 5.1环境准备 5.2部署ELK 5.2.1部署 Elasticsearch 软件 5.2.1.1修改elasticsearch主配置文件 5.2…...
k-means聚类算法的MATLAB实现及可视化
K-means算法是一种无监督学习算法,主要用于数据聚类。其工作原理基于迭代优化,将数据点划分为K个集群,使得每个数据点都属于最近的集群,并且每个集群的中心(质心)是所有属于该集群的数据点的平均值。以下是…...
Excel文件转Asc文件
单个转换 import os import pandas as pdfilename (10)result01-1.xlsx df pd.read_excel(filename) # 读取Excel文件# 将数据保存为ASC格式 asc_filename os.path.splitext(filename)[0] .asc # 获取文件名并替换扩展名 with open(asc_filename, w) as file:# 写入文件…...
【题目】【信息安全管理与评估】2022年国赛高职组“信息安全管理与评估”赛项样题7
【题目】【信息安全管理与评估】2022年国赛高职组“信息安全管理与评估”赛项样题7 信息安全管理与评估 网络系统管理 网络搭建与应用 云计算 软件测试 移动应用开发 任务书,赛题,解析等资料,知识点培训服务 添加博主wx:liuliu548…...
Webrtc 信令服务器实现
webrtc建联流程图 由上图可知,所谓的信令服务器其实就是将peer的offer/candidate/answer传给对端而已。这样的话实现方式就有很多种了,目前普遍的方式HTTP/HTTPS,WS/WSS。像webrtc-demo-peerconnection就是实现HTTP这种方式。本文使用WS&…...
【Blockchain】连接智能合约与现实世界的桥梁Chainlink
去中心化预言机试图实现依赖因果关系而不是个人关系的去信任和确定性结果。它以与区块链网络相同的方式实现这些结果,即在许多网络参与者之间分配信任。通过利用许多不同的数据源并实施不受单个实体控制的预言机系统,去中心化的预言机网络有可能为智能合…...
解决EasyPoi导入Excel获取不到第一列的问题
文章目录 1. 复现错误2. 分析错误2.1 导入的代码2.2 DictExcel实体类2.2 表头和标题3. 解决问题1. 复现错误 使用EasyPoi导入数据时,Excel表格如下图: 但在导入时,出现如下错误: name为英文名称,在第一列,Excel表格有值,但导入的代码中为null,就很奇怪? 2. 分析错误 …...
Vue 阶段练习:记事本
将 Vue快速入门 和 Vue 指令的学习成果应用到实际场景中(如该练习 记事本),我们能够解决实际问题并提升对 Vue 的技能掌握。 目录 功能展示 需求分析 我的代码 案例代码 知识点总结 功能展示 需求分析 列表渲染删除功能添加功能底部统计…...
JavaScript判断受访域名,调用不同的js文件
比如:我有三个域名: ① dengoo.net ② jfzm.cc ③ ceeha.com 如果当前访问的是 dengoo.net 域名及域名下页面,则调用 a.js 如果当前访问的是 jfzm.cc 域名及域名下页面,则调用 b.js 如果当前访问的是 ceeha.com 域名及域名下…...
下载软件时的Ubuntu x86_64-v2、skylake、aarch64版本分别代表什么?
Ubuntu-x86_64-v2、Ubuntu-x86_64-skylake和Ubuntu-aarch64都是Ubuntu的不同版本或变种,它们之间的主要区别在于所支持的硬件架构和针对特定硬件的优化。 Ubuntu-x86_64-v2: 这是基于x86_64(也称为AMD64或Intel 64)架构的Ubuntu版…...
数字化社交的引擎:解析Facebook的影响力
Facebook,作为全球最大的社交媒体平台,已经深深地融入了我们的日常生活和文化中。它不仅仅是一个简单的社交工具,更是一个复杂的数字生态系统,影响着我们的社交模式、文化认同以及信息获取方式。在这篇文章中,我们将深…...
淘宝API商品详情数据在数据分析行业中具有不可忽视的重要性
淘宝商品详情数据在数据分析行业中具有不可忽视的重要性。这些数据为商家、市场分析师以及数据科学家提供了丰富的信息,有助于他们更深入地理解市场动态、消费者行为以及商品竞争态势。以下是淘宝商品详情数据在数据分析行业中的重要性体现: 请求示例&a…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
