当前位置: 首页 > news >正文

RocketMQ 10 面试题FAQ

RocketMQ 面试FAQ

说说你们公司线上生产环境用的是什么消息中间件?

为什么要使用MQ?

因为项目比较大,做了分布式系统,所有远程服务调用请求都是同步执行经常出问题,所以引入了mq

解耦

系统耦合度降低,没有强依赖关系

异步

不需要同步执行的远程调用可以有效提高响应时间

削峰

请求达到峰值后,后端service还可以保持固定消费速率消费,不会被压垮

多个mq如何选型?

RabbitMQ

erlang开发,延迟比较低

RocketMQ

java开发,面向互联网集群化功能丰富

kafka

Scala开发,面向日志功能丰富

ActiveMQ

java开发,简单,稳定

小项目:ActiveMQ

大项目:RocketMQ或kafka、RabbitMq

RocketMQ由哪些角色组成,每个角色作用和特点是什么?

nameserver 无状态 动态列表

producer

broker

consumer

RocketMQ中的Topic和ActiveMQ有什么区别?

ActiveMQ

有destination的概念,即消息目的地

destination分为两类:

  • topic
    • 广播消息
  • queue
    • 队列消息

RocketMQ

RocketMQ的Topic是一组Message Queue的集合 ConsumeQueue

一条消息是广播消息还是队列消息由客户端消费决定

RocketMQ Broker中的消息被消费后会立即删除吗?

不会,每条消息都会持久化到CommitLog中,每个consumer连接到broker后会维持消费进度信息,当有消息消费后只是当前consumer的消费进度(CommitLog的offset)更新了。

那么消息会堆积吗?什么时候清理过期消息?

4.6版本默认48小时后会删除不再使用的CommitLog文件

  • 检查这个文件最后访问时间
  • 判断是否大于过期时间
  • 指定时间删除,默认凌晨4点

RocketMQ消费模式有几种?

消费模型由consumer决定,消费维度为Topic

集群消费

一组consumer同时消费一个topic,可以分配消费负载均衡策略分配consumer对应消费topic下的哪些queue

多个group同时消费一个topic时,每个group都会消费到数据

一条消息只会被一个group中的consumer消费,

广播消费

消息将对一 个Consumer Group 下的各个 Consumer 实例都消费一遍。即即使这些 Consumer 属于同一个Consumer Group ,消息也会被 Consumer Group 中的每个 Consumer 都消费一次。

消费消息时使用的是push还是pull?

在刚开始的时候就要决定使用哪种方式消费

两种:

DefaultLitePullConsumerImpl

DefaultMQPushConsumerImpl

两个实现 DefaultLitePullConsumerImpl DefaultMQPushConsumerImpl都实现了MQConsumerInner接口接口

名称上看起来是一个推,一个拉,但实际底层实现都是采用的长轮询机制,即拉取方式

broker端属性 longPollingEnable 标记是否开启长轮询。默认开启

为什么要主动拉取消息而不使用事件监听方式?

事件驱动方式是建立好长连接,由事件(发送数据)的方式来实时推送。

如果broker主动推送消息的话有可能push速度快,消费速度慢的情况,那么就会造成消息在consumer端堆积过多,同时又不能被其他consumer消费的情况

说一说几种常见的消息同步机制?

push:

如果broker主动推送消息的话有可能push速度快,消费速度慢的情况,那么就会造成消息在consumer端堆积过多,同时又不能被其他consumer消费的情况

pull:

轮训时间间隔,固定值的话会造成资源浪费

长轮询:

上连接 短连接(每秒) 长轮询

broker如何处理拉取请求的?

consumer首次请求broker

  • broker中是否有符合条件的消息
  • 有 ->
    • 响应consumer
    • 等待下次consumer的请求
  • 没有
    • 挂起consumer的请求,即不断开连接,也不返回数据
    • 挂起时间长短,写死在代码里的吗?长轮询写死,短轮询可以配
    • 使用consumer的offset,
      • DefaultMessageStore#ReputMessageService#run方法
        • 每隔1ms检查commitLog中是否有新消息,有的话写入到pullRequestTable
        • 当有新消息的时候返回请求
      • PullRequestHoldService 来Hold连接,每个5s执行一次检查pullRequestTable有没有消息,有的话立即推送

RocketMQ如何做负载均衡?

通过Topic在多broker种分布式存储实现

producer端

发送端指定Target message queue发送消息到相应的broker,来达到写入时的负载均衡

  • 提升写入吞吐量,当多个producer同时向一个broker写入数据的时候,性能会下降
  • 消息分布在多broker种,为负载消费做准备

每 30 秒从 nameserver获取 Topic 跟 Broker 的映射关系,近实时获取最新数据存储单元,queue落地在哪个broker中

在使用api中send方法的时候,可以指定Target message queue写入或者使用MessageQueueSelector

默认策略是随机选择:
  • producer维护一个index
  • 每次取节点会自增
  • index向所有broker个数取余
  • 自带容错策略
其他实现
  • SelectMessageQueueByHash
    • hash的是传入的args
  • SelectMessageQueueByRandom
  • SelectMessageQueueByMachineRoom 没有实现

也可以自定义实现MessageQueueSelector接口中的select方法

MessageQueue select(final List<MessageQueue> mqs, final Message msg, final Object arg);

可以自定义规则来选择mqs

如何知道mqs的,mqs的数据从哪儿来?

producer.start()方法

参考源码

  • 启动producer的时候会向nameserver发送心跳包
  • 获取nameserver中的topic列表
  • 使用topic向nameserver获取topicRouteData

TopicRouteData对象表示与某一个topic有关系的broker节点信息,内部包含多个QueueData对象(可以有多个broker集群支持该topic)和多个BrokerData信息(多个集群的多个节点信息都在该列表中)

producer加工TopicRouteData,对应的多节点信息后返回mqs。

consumer端

客户端完成负载均衡

  • 获取集群其他节点
  • 当前节点消费哪些queue
  • 负载粒度直到Message Queue
  • consumer的数量最好和Message Queue的数量对等或者是倍数,不然可能会有消费倾斜
  • 每个consumer通过balanced维护processQueueTable
    • processQueueTable为当前consumer的消费queue
    • processQueueTable中有
      • ProcessQueue :维护消费进度,从broker中拉取回来的消息缓冲
      • MessageQueue : 用来定位查找queue

DefaultMQPushConsumer默认 使用AllocateMessageQueueAveragely(平均分配)

当消费负载均衡consumer和queue不对等的时候会发生什么?

平均分配

在这里插入图片描述

环形分配

在这里插入图片描述

负载均衡算法

平均分配策略(默认)(AllocateMessageQueueAveragely)
环形分配策略(AllocateMessageQueueAveragelyByCircle)
手动配置分配策略(AllocateMessageQueueByConfig)
机房分配策略(AllocateMessageQueueByMachineRoom)
一致性哈希分配策略(AllocateMessageQueueConsistentHash)
靠近机房策略(AllocateMachineRoomNearby)

consumer启动流程参考源码

消息丢失

SendResult

producer在发送同步/异步可靠消息后,会接收到SendResult,表示消息发送成功

SendResult其中属性sendStatus表示了broker是否真正完成了消息存储

当sendStatus!="ok"的时候,应该重新发送消息,避免丢失

当producer.setRetryAnotherBrokerWhenNotStoreOK

消息重复消费

影响消息正常发送和消费的重要原因是网络的不确定性。

可能是因为consumer首次启动引起重复消费

需要设置consumer.setConsumeFromWhere

只对一个新的consumeGroup第一次启动时有效,设置从头消费还是从维护开始消费

你们怎么保证投递出去的消息只有一条且仅仅一条,不会出现重复的数据?

绑定业务key

如果消费了重复的消息怎么保证数据的准确性?

引起重复消费的原因

ACK

正常情况下在consumer真正消费完消息后应该发送ack,通知broker该消息已正常消费,从queue中剔除

当ack因为网络原因无法发送到broker,broker会认为词条消息没有被消费,此后会开启消息重投机制把消息再次投递到consumer

group

在CLUSTERING模式下,消息在broker中会保证相同group的consumer消费一次,但是针对不同group的consumer会推送多次

解决方案

数据库表

处理消息前,使用消息主键在表中带有约束的字段中insert

Map

单机时可以使用map ConcurrentHashMap -> putIfAbsent guava cache

Redis

使用主键或set操作

如何让RocketMQ保证消息的顺序消费

你们线上业务用消息中间件的时候,是否需要保证消息的顺序性?

如果不需要保证消息顺序,为什么不需要?假如我有一个场景要保证消息的顺序,你们应该如何保证?

  • 同一topic

  • 同一个QUEUE

  • 发消息的时候一个线程去发送消息

  • 消费的时候 一个线程 消费一个queue里的消息或者使用MessageListenerOrderly

  • 多个queue 只能保证单个queue里的顺序

应用场景是啥?

应用系统和现实的生产业务绑定,避免在分布式系统中多端消费业务消息造成顺序混乱

比如需要严格按照顺序处理的数据或业务

数据包装/清洗

数据:

import java.nio.ByteBuffer;
import java.nio.charset.Charset;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
  1. 去掉import
  2. 统计某个字符出现次数

业务流程处理

返修过程

  1. 收件录入信息
  2. 信息核对
  3. 送入检修系统处理

电商订单

  1. 创建订单
  2. 检查库存预扣库存
  3. 支付
  4. 真扣库存

binlog同步

RocketMQ如何保证消息不丢失

  1. 生产端如何保证投递出去的消息不丢失:消息在半路丢失,或者在MQ内存中宕机导致丢失,此时你如何基于MQ的功能保证消息不要丢失?
  2. MQ自身如何保证消息不丢失?
  3. 消费端如何保证消费到的消息不丢失:如果你处理到一半消费端宕机,导致消息丢失,此时怎么办?

解耦的思路

发送方

发送消息时做消息备份(记日志或同步到数据库),判断sendResult是否正常返回

broker

节点保证

  • master接受到消息后同步刷盘,保证了数据持久化到了本机磁盘中
  • 同步写入slave
  • 写入完成后返回SendResult
consumer
  • 记日志
  • 同步执行业务逻辑,最后返回ack
  • 异常控制

磁盘保证

使用Raid磁盘阵列保证数据磁盘安全

网络数据篡改

内置TLS可以开启,默认使用crc32校验数据

消息刷盘机制底层实现

每间隔10ms,执行一次数据持久化操作

两种, 同步刷、异步刷

   public void run() {CommitLog.log.info(this.getServiceName() + " service started");while (!this.isStopped()) {try {this.waitForRunning(10);this.doCommit();} catch (Exception e) {CommitLog.log.warn(this.getServiceName() + " service has exception. ", e);}}

rocketMq的消息堆积如何处理

下游消费系统如果宕机了,导致几百万条消息在消息中间件里积压,此时怎么处理?

你们线上是否遇到过消息积压的生产故障?如果没遇到过,你考虑一下如何应对?

具体表现为 ui中转圈圈

对于大规模消息发送接收可以使用pull模式,手动处理消息拉取速度,消费的时候统计消费时间以供参考

保证消息消费速度固定,即可通过上线更多consumer临时解决消息堆积问题

如果consumer和queue不对等,上线了多台也在短时间内无法消费完堆积的消息怎么办?

  • 准备一个临时的topic

  • queue的数量是堆积的几倍

  • queue分不到多broker种

  • 上线一台consumer做消息的搬运工,把原来topic中的消息挪到新的topic里,不做业务逻辑处理,只是挪过去

  • 上线N台consumer同时消费临时topic中的数据

  • 改bug

  • 恢复原来的consumer,继续消费之前的topic

堆积时间过长消息超时了?

RocketMQ中的消息只会在commitLog被删除的时候才会消失,不会超时

堆积的消息会不会进死信队列?

不会,消息在消费失败后会进入重试队列(%RETRY%+consumergroup),多次(默认16)才会进入死信队列(%DLQ%+consumergroup)

你们用的是RocketMQ?那你说说RocketMQ的底层架构原理,磁盘上数据如何存储的,整体分布式架构是如何实现的?

零拷贝等技术是如何运用的?

使用nio的MappedByteBuffer调起数据输出

你们用的是RocketMQ?RocketMQ很大的一个特点是对分布式事务的支持,你说说他在分布式事务支持这块机制的底层原理?

分布式系统中的事务可以使用TCC(Try、Confirm、Cancel)、2pc来解决分布式系统中的消息原子性

RocketMQ 4.3+提供分布事务功能,通过 RocketMQ 事务消息能达到分布式事务的最终一致

RocketMQ实现方式

**Half Message:**预处理消息,当broker收到此类消息后,会存储到RMQ_SYS_TRANS_HALF_TOPIC的消息消费队列中

**检查事务状态:**Broker会开启一个定时任务,消费RMQ_SYS_TRANS_HALF_TOPIC队列中的消息,每次执行任务会向消息发送者确认事务执行状态(提交、回滚、未知),如果是未知,等待下一次回调。

**超时:**如果超过回查次数,默认回滚消息

TransactionListener的两个方法
executeLocalTransaction

半消息发送成功触发此方法来执行本地事务

checkLocalTransaction

broker将发送检查消息来检查事务状态,并将调用此方法来获取本地事务状态

本地事务执行状态

LocalTransactionState.COMMIT_MESSAGE

执行事务成功,确认提交

LocalTransactionState.ROLLBACK_MESSAGE

回滚消息,broker端会删除半消息

LocalTransactionState.UNKNOW

暂时为未知状态,等待broker回查

如果让你来动手实现一个分布式消息中间件,整体架构你会如何设计实现?

看过RocketMQ 的源码没有。如果看过,说说你对RocketMQ 源码的理解?

高吞吐量下如何优化生产者和消费者的性能?

消费

  • 同一group下,多机部署,并行消费

  • 单个consumer提高消费线程个数

  • 批量消费

    • 消息批量拉取
    • 业务逻辑批量处理

运维

  • 网卡调优
  • jvm调优
  • 多线程与cpu调优
  • Page Cache

再说说RocketMQ 是如何保证数据的高容错性的?

  • 在不开启容错的情况下,轮询队列进行发送,如果失败了,重试的时候过滤失败的Broker
  • 如果开启了容错策略,会通过RocketMQ的预测机制来预测一个Broker是否可用
  • 如果上次失败的Broker可用那么还是会选择该Broker的队列
  • 如果上述情况失败,则随机选择一个进行发送
  • 在发送消息的时候会记录一下调用的时间与是否报错,根据该时间去预测broker的可用时间

相关文章:

RocketMQ 10 面试题FAQ

RocketMQ 面试FAQ 说说你们公司线上生产环境用的是什么消息中间件? 为什么要使用MQ&#xff1f; 因为项目比较大&#xff0c;做了分布式系统&#xff0c;所有远程服务调用请求都是同步执行经常出问题&#xff0c;所以引入了mq 解耦 系统耦合度降低&#xff0c;没有强依赖…...

【Spring进阶系列丨第十篇】基于注解的面向切面编程(AOP)详解

文章目录 一、基于注解的AOP1、配置Spring环境2、在beans.xml文件中定义AOP约束3、定义记录日志的类【切面】4、定义Bean5、在主配置文件中配置扫描的包6、在主配置文件中去开启AOP的注解支持7、测试8、优化改进9、总结 一、基于注解的AOP 1、配置Spring环境 <dependencie…...

Leetcode 152. 乘积最大子数组和Leetcode 162. 寻找峰值

文章目录 Leetcode 152. 乘积最大子数组题目描述C语言题解和思路解题思路 Leetcode 162. 寻找峰值题目描述C语言题解和思路解题思路 Leetcode 152. 乘积最大子数组 题目描述 给你一个整数数组 nums &#xff0c;请你找出数组中乘积最大的非空连续子数组&#xff08;该子数组中…...

项目实战之网络电话本之发送邮件名片和导出word版个人信息

1、项目介绍 1&#xff09;项目功能 用户管理&#xff1a;分为管理员、和普通用户&#xff0c;设置不同用户的权限 电话本信息管理&#xff1a;支持管理员和普通用户对电话本的信息进行增删改操作&#xff0c;模糊查询&#xff08;根据姓名、地址、单位&#xff09; 文件批…...

前端面试问题汇总 - HTTP篇

1. 登录拦截如何实现&#xff1f; 在前端&#xff0c;可以拦截所有需要登录的请求&#xff0c;如果用户未登录或者登录过期&#xff0c;则跳转到登录页面。 2. http 缓存有哪些&#xff1f; 强缓存&#xff1a; 强缓存是指在客户端请求资源时&#xff0c;先检查本地是否存在缓存…...

Java的IO流

Day35 Java的IO流 概念 Java的IO流是用来处理输入和输出操作的机制&#xff0c;用于在程序和外部数据源&#xff08;如文件、网络连接、内存等&#xff09;之间进行数据传输。Java的IO流主要分为字节流和字符流两种类型&#xff0c;每种类型又分为输入流和输出流。 理解&#…...

Node.js 中的 RSA 加密、解密、签名与验证详解

引言 在现代的网络通信中&#xff0c;数据安全显得尤为重要。RSA加密算法因其非对称的特性&#xff0c;广泛应用于数据的加密、解密、签名和验证等安全领域。本文将详细介绍RSA算法的基本原理&#xff0c;并结合Node.js环境&#xff0c;展示如何使用内置的crypto模块和第三方库…...

vue+element作用域插槽

作用域插槽的样式由父组件决定&#xff0c;内容却由子组件控制。 在el-table使用作用域插槽 <el-table><el-table-column slot-scope" { row, column, $index }"></el-table-column> </el-table>在el-tree使用作用域插槽 <el-tree>…...

MUSA模型

MUSA模型在软件可靠性工程中起到的作用是估计软件的故障/失效数量和故障率。具体来说&#xff0c;MUSA模型包括基本模型和对数模型。 MUSA基本模型假设故障发生的时间间隔服从参数为lambda的指数分布。在这个模型中&#xff0c;当故障被检测到时&#xff0c;发生故障的部分会被…...

avicat连接异常,错误编号2059-authentication plugin…

错误原因为密码方式不对&#xff0c;具体可自行百度 首先管理员执行cmd进入 mysql安装目录 bin下边 我的是C:\Program Files\MySQL\MySQL Server 8.2\bin> 执行 mysql -u -root -p 然后输入密码 123456 进入mysql数据库 use mysql 执行 ALTER USER rootlocalhost IDE…...

阿里云云效CI/CD配置

1.NODEJS项目流水线配置(vue举例) nodejs构建配置 官方教程 注意:下图的dist是vue项目打包目录名称,根据实际名称配置 # input your command here cnpm cache clean --force cnpm install cnpm run build 主机部署配置 rm -rf /home/vipcardmall/frontend/ mkdir -p /home/…...

个人开发者,Spring Boot 项目如何部署

今天给大家分享一下&#xff0c;作为个人开发者&#xff0c;Spring Boot 项目是如何部署的。 环境介绍 Linux docker docker-compose 目录结构 erwin-windrunner - backups - data - jars - build-docker-compose.sh - docker-compose.yml - Dockerfile文件 Dockerfile …...

【Spring进阶系列丨第九篇】基于XML的面向切面编程(AOP)详解

文章目录 一、基于XML的AOP1.1、打印日志案例1.1.1、beans.xml中添加aop的约束1.1.2、定义Bean 1.2、定义记录日志的类【切面】1.3、导入AOP的依赖1.4、主配置文件中配置AOP1.5、测试1.6、切入点表达式1.6.1、访问修饰符可以省略1.6.2、返回值可以使用通配符&#xff0c;表示任…...

学习记录:转发和重定向

转发&#xff08;Forward&#xff09;和重定向&#xff08;Redirect&#xff09;是两种不同的 Web 请求处理方式&#xff0c;它们在功能和行为上有着显著的区别。 区别 转发&#xff08;Forward&#xff09;&#xff1a; 服务器内部跳转&#xff1a;转发是服务器内部的行为&…...

实现(图像、视频等)数据上云存储

实现&#xff08;图像、视频等&#xff09;数据上云存储 实现&#xff08;图像、视频等&#xff09;数据上云存储通常涉及以下几个步骤&#xff1a; 选择云存储服务商&#xff1a; 根据您的需求、预算、地域覆盖、数据安全性、服务稳定性等因素&#xff0c;选择一家合适的云存储…...

LeetCode 454.四数相加II

LeetCode 454.四数相加II 1、题目 题目链接&#xff1a;454. 四数相加 II - 力扣&#xff08;LeetCode&#xff09; 给你四个整数数组 nums1、nums2、nums3 和 nums4 &#xff0c;数组长度都是 n &#xff0c;请你计算有多少个元组 (i, j, k, l) 能满足&#xff1a; 0 <…...

GoogleNet网络训练集和测试集搭建

测试集和训练集都是在之前搭建好的基础上进行修改的&#xff0c;重点记录与之前不同的代码。 还是使用的花分类的数据集进行训练和测试的。 一、训练集 1、搭建网络 设置参数&#xff1a;使用辅助分类器&#xff0c;采用权重初始化 net GoogleNet(num_classes5, aux_logi…...

将数字状态码在后台转换为中文状态

这是我们的实体类 可以看出我们的状态status是2如过返回到前端我们根本不知道2代表的是什么&#xff0c;所以我们需要再这里将数字转换成能看懂的中文状态&#xff0c;首先我们创建一个枚举类 先将我们状态码所对应的中文状态枚举出来&#xff0c;然后创建一个静态方法&#…...

2017NOIP普及组真题 4. 跳房子

线上OJ&#xff1a; 一本通&#xff1a;http://ybt.ssoier.cn:8088/problem_show.php?pid1417\ 核心思想 首先、本题中提到 “ 至少 要花多少金币改造机器人&#xff0c;能获得 至少 k分 ”。看到这样的话语&#xff0c;基本可以考虑要使用 二分答案。 那么&#xff0c;本题中…...

网络与 Internet因特网的基本概念

目录 网络Internet &#xff08;互联网或互连网&#xff09;Internet&#xff08;因特网&#xff09;待续、更新中 网络 指将分布在不同地理位置的、相同或不同类型的网络通过网络互连设备&#xff08;中继器、网桥、路由器或网关等&#xff09;相互连接&#xff0c;形成一个范…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...