Prometheus接入AlterManager配置邮件告警(基于K8S环境部署)
目录
- 一.配置Alertmanager告警发送至邮箱
- 二.Prometheus接入AlertManager
- 三.部署Prometheus+AlterManager(放到一个Pod中)
- 四. 测试告警
基于 此环境做实验
一.配置Alertmanager告警发送至邮箱
1.创建AlertManager ConfigMap资源清单
vim alertmanager-cm.yaml
---
kind: ConfigMap
apiVersion: v1
metadata:name: alertmanagernamespace: prometheus
data:alertmanager.yml: |-global: resolve_timeout: 1msmtp_smarthost: 'smtp.qq.com:25'smtp_from: '1657310554@qq.com' # 从这个邮箱发送告警smtp_auth_username: '1657310554@qq.com' # 发送告警邮箱账号smtp_auth_password: 'rehtuhigsemwbbbe' # 邮箱验证码,用自己的邮箱验证码smtp_require_tls: falseroute: # 路由配置(将邮箱发送那个路由)group_by: [alertname]group_wait: 10sgroup_interval: 10srepeat_interval: 10mreceiver: default-receiver # 告警发送到default-receiver接受者receivers:- name: 'default-receiver' # 定义default-receiver接受者email_configs:- to: '1657310554@qq.com' # 告警发送邮箱地址send_resolved: true
执行YAML资源清单:
kubectl apply -f alertmanager-cm.yaml
2.配置文件核心配置说明
- group_by: [alertname]:采用哪个标签来作为分组依据。
- group_wait:10s:组告警等待时间。就是告警产生后等待10s,如果有同组告警一起发出。
- group_interval: 10s :上下两组发送告警的间隔时间。
- repeat_interval: 10m:重复发送告警的时间,减少相同邮件的发送频率,默认是1h。
- receiver: default-receiver:定义谁来收告警。
- smtp_smarthost: SMTP服务器地址+端口。
- smtp_from:指定从哪个邮箱发送报警。
- smtp_auth_username:邮箱账号。
- smtp_auth_password: 邮箱密码(授权码)。
二.Prometheus接入AlertManager
1.创建新的Prometheus ConfigMap资源清单,添加监控K8S集群告警规则
vim prometheus-alertmanager-cfg.yaml
---
kind: ConfigMap
apiVersion: v1
metadata:labels:app: prometheusname: prometheus-confignamespace: prometheus
data:prometheus.yml: |rule_files: - /etc/prometheus/rules.yml # 告警规则位置alerting:alertmanagers:- static_configs:- targets: ["localhost:9093"] # 接入AlterManagerglobal:scrape_interval: 15sscrape_timeout: 10sevaluation_interval: 1mscrape_configs:- job_name: 'kubernetes-node'kubernetes_sd_configs:- role: noderelabel_configs:- source_labels: [__address__]regex: '(.*):10250'replacement: '${1}:9100'target_label: __address__action: replace- action: labelmapregex: __meta_kubernetes_node_label_(.+)- job_name: 'kubernetes-node-cadvisor'kubernetes_sd_configs:- role: nodescheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crtbearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/tokenrelabel_configs:- action: labelmapregex: __meta_kubernetes_node_label_(.+)- target_label: __address__replacement: kubernetes.default.svc:443- source_labels: [__meta_kubernetes_node_name]regex: (.+)target_label: __metrics_path__replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor- job_name: 'kubernetes-apiserver'kubernetes_sd_configs:- role: endpointsscheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crtbearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/tokenrelabel_configs:- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]action: keepregex: default;kubernetes;https- job_name: 'kubernetes-service-endpoints'kubernetes_sd_configs:- role: endpointsrelabel_configs:- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]action: keepregex: true- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]action: replacetarget_label: __scheme__regex: (https?)- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]action: replacetarget_label: __metrics_path__regex: (.+)- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]action: replacetarget_label: __address__regex: ([^:]+)(?::\d+)?;(\d+)replacement: $1:$2- action: labelmapregex: __meta_kubernetes_service_label_(.+)- source_labels: [__meta_kubernetes_namespace]action: replacetarget_label: kubernetes_namespace- source_labels: [__meta_kubernetes_service_name]action: replacetarget_label: kubernetes_name - job_name: 'kubernetes-pods' # 监控Pod配置,添加注解后才可以被发现kubernetes_sd_configs:- role: podrelabel_configs:- action: keepregex: truesource_labels:- __meta_kubernetes_pod_annotation_prometheus_io_scrape- action: replaceregex: (.+)source_labels:- __meta_kubernetes_pod_annotation_prometheus_io_pathtarget_label: __metrics_path__- action: replaceregex: ([^:]+)(?::\d+)?;(\d+)replacement: $1:$2source_labels:- __address__- __meta_kubernetes_pod_annotation_prometheus_io_porttarget_label: __address__- action: labelmapregex: __meta_kubernetes_pod_label_(.+)- action: replacesource_labels:- __meta_kubernetes_namespacetarget_label: kubernetes_namespace- action: replacesource_labels:- __meta_kubernetes_pod_nametarget_label: kubernetes_pod_name- job_name: 'kubernetes-etcd' # 监控etcd配置scheme: httpstls_config:ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crtcert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crtkey_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.keyscrape_interval: 5sstatic_configs:- targets: ['192.168.40.180:2379'] # ip为master1的iprules.yml: | # K8S集群告警规则配置文件groups:- name: examplerules:- alert: apiserver的cpu使用率大于80%expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"- alert: apiserver的cpu使用率大于90%expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"- alert: etcd的cpu使用率大于80%expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"- alert: etcd的cpu使用率大于90%expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"- alert: kube-state-metrics的cpu使用率大于80%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"value: "{{ $value }}%"threshold: "80%" - alert: kube-state-metrics的cpu使用率大于90%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"value: "{{ $value }}%"threshold: "90%" - alert: coredns的cpu使用率大于80%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"value: "{{ $value }}%"threshold: "80%" - alert: coredns的cpu使用率大于90%expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"value: "{{ $value }}%"threshold: "90%" - alert: kube-proxy打开句柄数>600expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kube-proxy打开句柄数>1000expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-schedule打开句柄数>600expr: process_open_fds{job=~"kubernetes-schedule"} > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-schedule打开句柄数>1000expr: process_open_fds{job=~"kubernetes-schedule"} > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-controller-manager打开句柄数>600expr: process_open_fds{job=~"kubernetes-controller-manager"} > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-controller-manager打开句柄数>1000expr: process_open_fds{job=~"kubernetes-controller-manager"} > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-apiserver打开句柄数>600expr: process_open_fds{job=~"kubernetes-apiserver"} > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-apiserver打开句柄数>1000expr: process_open_fds{job=~"kubernetes-apiserver"} > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: kubernetes-etcd打开句柄数>600expr: process_open_fds{job=~"kubernetes-etcd"} > 600for: 2slabels:severity: warnningannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"value: "{{ $value }}"- alert: kubernetes-etcd打开句柄数>1000expr: process_open_fds{job=~"kubernetes-etcd"} > 1000for: 2slabels:severity: criticalannotations:description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"value: "{{ $value }}"- alert: corednsexpr: process_open_fds{k8s_app=~"kube-dns"} > 600for: 2slabels:severity: warnning annotations:description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600"value: "{{ $value }}"- alert: corednsexpr: process_open_fds{k8s_app=~"kube-dns"} > 1000for: 2slabels:severity: criticalannotations:description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000"value: "{{ $value }}"- alert: kube-proxyexpr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"} > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: schedulerexpr: process_virtual_memory_bytes{job=~"kubernetes-schedule"} > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kubernetes-controller-managerexpr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"} > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kubernetes-apiserverexpr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"} > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kubernetes-etcdexpr: process_virtual_memory_bytes{job=~"kubernetes-etcd"} > 2000000000for: 2slabels:severity: warnningannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: kube-dnsexpr: process_virtual_memory_bytes{k8s_app=~"kube-dns"} > 2000000000for: 2slabels:severity: warnningannotations:description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过2G"value: "{{ $value }}"- alert: HttpRequestsAvgexpr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m])) > 1000for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000"value: "{{ $value }}"threshold: "1000" - alert: Pod_restartsexpr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0for: 2slabels:severity: warnningannotations:description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的"value: "{{ $value }}"threshold: "0"- alert: Pod_waitingexpr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1for: 2slabels:team: adminannotations:description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中"value: "{{ $value }}"threshold: "1" - alert: Pod_terminatedexpr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1for: 2slabels:team: adminannotations:description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除"value: "{{ $value }}"threshold: "1"- alert: Etcd_leaderexpr: etcd_server_has_leader{job="kubernetes-etcd"} == 0for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader"value: "{{ $value }}"threshold: "0"- alert: Etcd_leader_changesexpr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变"value: "{{ $value }}"threshold: "0"- alert: Etcd_failedexpr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败"value: "{{ $value }}"threshold: "0"- alert: Etcd_db_total_sizeexpr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000for: 2slabels:team: adminannotations:description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G"value: "{{ $value }}"threshold: "10G"- alert: Endpoint_readyexpr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1for: 2slabels:team: adminannotations:description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用"value: "{{ $value }}"threshold: "1"- name: 物理节点状态-监控告警rules:- alert: 物理节点cpu使用率expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90for: 2slabels:severity: ccriticalannotations:summary: "{{ $labels.instance }}cpu使用率过高"description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理" - alert: 物理节点内存使用率expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90for: 2slabels:severity: criticalannotations:summary: "{{ $labels.instance }}内存使用率过高"description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理"- alert: InstanceDownexpr: up == 0for: 2slabels:severity: criticalannotations: summary: "{{ $labels.instance }}: 服务器宕机"description: "{{ $labels.instance }}: 服务器延时超过2分钟"- alert: 物理节点磁盘的IO性能expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!"description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})"- alert: 入网流量带宽expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 流入网络带宽过高!"description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"- alert: 出网流量带宽expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 流出网络带宽过高!"description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"- alert: TCP会话expr: node_netstat_Tcp_CurrEstab > 1000for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!"description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)"- alert: 磁盘容量expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80for: 2slabels:severity: criticalannotations:summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!"description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$value}}%)"
执行资源清单:
kubectl apply -f prometheus-alertmanager-cfg.yaml
2.由于在prometheus中新增了etcd,所以生成一个etcd-certs,这个在部署prometheus需要
kubectl -n prometheus create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/
三.部署Prometheus+AlterManager(放到一个Pod中)
1.在node1节点创建/data/alertmanager目录,存放alertmanager数据
mkdir /data/alertmanager -p
chmod -R 777 /data/alertmanager
2.删除旧的prometheus deployment资源
kubectl delete deploy prometheus-server -n prometheus
3.创建deployment资源
vim prometheus-alertmanager-deploy.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:name: prometheus-servernamespace: prometheuslabels:app: prometheus
spec:replicas: 1selector:matchLabels:app: prometheuscomponent: servertemplate:metadata:labels:app: prometheuscomponent: serverannotations:prometheus.io/scrape: 'false'spec:nodeName: node1 # 调度到node1节点serviceAccountName: prometheus # 指定sa服务账号containers:- name: prometheusimage: prom/prometheus:v2.33.5imagePullPolicy: IfNotPresentcommand:- "/bin/prometheus"args:- "--config.file=/etc/prometheus/prometheus.yml"- "--storage.tsdb.path=/prometheus"- "--storage.tsdb.retention=24h"- "--web.enable-lifecycle"ports:- containerPort: 9090protocol: TCPvolumeMounts:- mountPath: /etc/prometheusname: prometheus-config- mountPath: /prometheus/name: prometheus-storage-volume- name: k8s-certsmountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/- name: alertmanagerimage: prom/alertmanager:v0.23.0imagePullPolicy: IfNotPresentargs:- "--config.file=/etc/alertmanager/alertmanager.yml"- "--log.level=debug"ports:- containerPort: 9093protocol: TCPname: alertmanagervolumeMounts:- name: alertmanager-configmountPath: /etc/alertmanager- name: alertmanager-storagemountPath: /alertmanager- name: localtimemountPath: /etc/localtimevolumes:- name: prometheus-configconfigMap:name: prometheus-config- name: prometheus-storage-volumehostPath:path: /datatype: Directory- name: k8s-certssecret:secretName: etcd-certs- name: alertmanager-configconfigMap:name: alertmanager- name: alertmanager-storagehostPath:path: /data/alertmanagertype: DirectoryOrCreate- name: localtimehostPath:path: /usr/share/zoneinfo/Asia/Shanghai
执行YAML资源清单:
kubectl apply -f prometheus-alertmanager-deploy.yaml
查看状态:
kubectl get pods -n prometheus

4.创建AlertManager SVC资源
vim alertmanager-svc.yaml
---
apiVersion: v1
kind: Service
metadata:labels:name: prometheuskubernetes.io/cluster-service: 'true'name: alertmanagernamespace: prometheus
spec:ports:- name: alertmanagernodePort: 30066port: 9093protocol: TCPtargetPort: 9093selector:app: prometheussessionAffinity: Nonetype: NodePort
执行YAML资源清单:
kubectl apply -f alertmanager-svc.yaml
查看状态:
kubectl get svc -n prometheus

四. 测试告警
浏览器访问:http://IP:30066

如上图可以看到,Prometheus的告警信息已经发到AlterManager了,AlertManager收到报警数据后,会将警报信息进行分组,然后根据AlertManager配置的 group_wait 时间先进行等待。等wait时间过后再发送报警信息至邮件!

相关文章:
Prometheus接入AlterManager配置邮件告警(基于K8S环境部署)
目录 一.配置Alertmanager告警发送至邮箱二.Prometheus接入AlertManager三.部署PrometheusAlterManager(放到一个Pod中)四. 测试告警 基于 此环境做实验 一.配置Alertmanager告警发送至邮箱 1.创建AlertManager ConfigMap资源清单 vim alertmanager-cm.yaml --- kind: Confi…...
find方法
find() 方法用于在数组中查找符合条件的第一个元素,并返回该元素。如果找到匹配的元素,则返回该元素的值;如果未找到匹配的元素,则返回 undefined。 例如: const firstWithdrawal movements.find(mov > mov < 0); consol…...
TLS v1.3 导致JetBrains IDE jdk.internal.net.http.common CPU占用高
开发环境 GoLand版本:2022.3.4 问题原因 JDK 中的 TLS v1.3 实现引起 解决办法 使用 SOCKS 代理代替HTTP代理 禁用 Space 和 Code With Me 插件 禁用 TLS v1.3,参考:https://stackoverflow.com/questions/54485755/java-11-httpclient-…...
计算机网络 2.2数据传输方式
第二节 数据传输方式 一、数据通信系统模型 添加图片注释,不超过 140 字(可选) 1.数据终端设备(DTE) 作用:用于处理用户数据的设备,是数据通信系统的信源和信宿。 设备:便携计算机…...
陇剑杯 流量分析 webshell CTF writeup
陇剑杯 流量分析 链接:https://pan.baidu.com/s/1KSSXOVNPC5hu_Mf60uKM2A?pwdhaek 提取码:haek目录结构 LearnCTF ├───LogAnalize │ ├───linux简单日志分析 │ │ linux-log_2.zip │ │ │ ├───misc日志分析 │ │ …...
【测试开发学习历程】python常用的模块(下)
目录 8、MySQL数据库的操作-pymysql 8.1 连接并操作数据库 9、ini文件的操作-configparser 9.1 模块-configparser 9.2 读取ini文件中的内容 9.3 获取指定建的值 10 json文件操作-json 10.1 json文件的格式或者json数据的格式 10.2 json.load/json.loads 10.3 json.du…...
GCDAsynSocket之TCP简析
GCDAsynSocket是一个开源的基于GCD的异步的socket库。它支持IPV4和IPV6地址,TLS/SSL协议。同时它支持iOS端和Mac端。本篇主要介绍一下GCDAsynSocket中的TCP用法和实现。 首先通过下面这个方法初始化一个GCDAsynSocket对象。 - (id)initWithDelegate:(id<GCDAsyn…...
大型网站系统架构演化实例_1.单体架构和垂直架构
大型网站的技术挑战主要来自于庞大的用户,高并发的访问和海量的数据,任何简单的业务一旦需要处理数以P计的数据和面对数以亿计的用户,问题就会变得很棘手。通常大型网站架构主要解决这类问题。 1.第一阶段:单体架构 大型网站都是…...
2024蓝桥杯——宝石问题
先展示题目 声明 以下代码仅是我的个人看法,在自己考试过程中的优化版,本人考试就踩了很多坑,我会—一列举出来。代码可能很多,但是总体时间复杂度不高只有0(N) 函数里面的动态数组我没有写开辟判断和free,这里我忽略…...
three.js加载模型报错,Error: THREE.GLTFLoader: No DRACOLoader instance provided.
three.js加载模型报错,Error: THREE.GLTFLoader: No DRACOLoader instance provided. 原因:该模型是压缩过的,需要 DRACOLoader 我们先找到该文件夹 node_modules three examples jsm libs draco 将draco拷贝到public下 import { GLTFLoad…...
Spring VS Spring Boot
目录 定义 Spring Spring Boot 区别 优劣对比 Spring Spring的优势 Spring的劣势 Spring Boot Spring Boot的优势 Spring Boot的劣势 适用场景 Spring的适用场景 Spring Boot的适用场景 初学者如何选择学习 定义 Spring Spring是一个轻量级的、开源的Java开发…...
Linux入门(Linux介绍,安装,常用命令,防火墙的设置,注意事项)
目录 一、Linux介绍 1. Linux简介 1 什么是Linux 2 Linux的应用 3 为什么要学习Linux 2. Linux分类 1 按照市场需求分 2 按照原生程度分 3.小结 二、Linux安装 1. vmware介绍 2. 安装VMWare 3. 安装CentOS 4. 登录查看ip 5. 远程连接工具 1 使用FinalShell连接L…...
vue2创建项目的两种方式,配置路由vue-router,引入element-ui
提示:vue2依赖node版本8.0以上 文章目录 前言一、创建项目基于vue-cli二、创建项目基于vue/cli三、对吧两种创建方式四、安装Element ui并引入五、配置路由跳转四、效果五、参考文档总结 前言 使用vue/cli脚手架vue create创建 使用vue-cli脚手架vue init webpack创…...
MySql 表中的id突然变很大,如何给id重新排序
目录 一、场景 二、解决方法 一、场景 我们在开发过程中,难免遇到id突然增大的情况。 由于id突然增大很多,我们重新增加数据时候id会默认加1 那么如何让id 重新从1按顺序排序呢 二、解决方法 点击编辑表,然后新建一个字段id2,将…...
leetcode练习——哈希表
目录 3. 无重复字符的最长子串 题目描述 解题思路 代码实现 349. 两个数组的交集 题目描述 解题思路 代码实现 454. 四数相加 II 题目描述 解题思路 代码实现 242. 有效的字母异位词 题目描述 解题思路 代码实现 438. 找到字符串中所有字母异位词 题目…...
配置交换机 SSH 管理和端口安全
实验1:配置交换机基本安全和 SSH管理 1、实验目的 通过本实验可以掌握: 交换机基本安全配置。SSH 的工作原理和 SSH服务端和客户端的配置。 2、实验拓扑 交换机基本安全和 SSH管理实验拓扑如图所示。 3、实验步骤 (1)配置交换机S1 Swit…...
基于SpringBoot+Vue的装饰工程管理系统(源码+文档+包运行)
一.系统概述 如今社会上各行各业,都喜欢用自己行业的专属软件工作,互联网发展到这个时候,人们已经发现离不开了互联网。新技术的产生,往往能解决一些老技术的弊端问题。因为传统装饰工程项目信息管理难度大,容错率低&a…...
vue3中axios添加请求和响应的拦截器
本章主要是以记录为主。 在src创建一个utils文件夹,并在utils中创建一个request.js文件。 // 引入axios import axios from "axios"; // import qs from "qs"; // 创建axios实例 const instance axios.create(); // 请求拦截器 instance.int…...
<router-link>出现Error: No match for {“name“:“home“,“params“:{}}
在将<a></a>标签换到<router-link></router-link>的时候出现No match for {"name":"home","params":{}}这样的错误,其中格式并无错误, <router-link class"navbar-brand active" …...
prompt 工程整理(未完、持续更新)
工作期间会将阅读的论文、一些个人的理解整理到个人的文档中,久而久之就积累了不少“个人”能够看懂的脉络和提纲,于是近几日准备将这部分略显杂乱的内容重新进行梳理。论文部分以我个人的理解对其做了一些分类,并附上一些简短的理解…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...
AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
MyBatis中关于缓存的理解
MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...
算法打卡第18天
从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入:inorder [9,3,15,20,7…...
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...
