当前位置: 首页 > news >正文

二叉树的遍历(前序、中序、后序)| C语言

目录

0.写在前面

1.前序遍历

步骤详解

代码实现

2.中序遍历

步骤详解

代码实现 

3.后序遍历

步骤详解

代码实现


0.写在前面

认识二叉树结构最简单的方式就是遍历二叉树。所谓遍历二叉树就是按照某种特定的规则,对二叉树的每一个节点进行访问,且每个节点只访问一次。

二叉树遍历的规则一般有四种:前序遍历、中序遍历、后序遍历和层序遍历。其中,前三种较为简单且实现方式大同小异。

        1.前序遍历:先访问根节点,再遍历左右子树;

        2.中序遍历:先遍历左子树,再访问根节点,再遍历右子树;

        3.后序遍历:先遍历左子树,再遍历右子树,再访问根节点。

简单记忆:前(根,左,右)、中(左,根,右)、后(左,右,根)。

在遍历二叉树之前,首先得拥有一棵二叉树。因为目前还没有学习如何构建二叉树,所以此处我们用最原始的办法——申请N个节点,将它们手动拼接为二叉树。

typedef int BTDataType;//二叉树节点的结构
typedef struct BTNode
{BTDataType data;struct BTNode* left;struct BTNode* right;
}BTNode;//定义一个申请新节点的函数
BTNode* BuyBTNode(BTDataType data)
{BTNode* newNode = (BTNode*)malloc(sizeof(BTNode));if (newNode == NULL){perror("malloc fail");exit(-1);}newNode->data = data;newNode->left = NULL;newNode->right = NULL;return newNode;}int main()
{//手动申请节点加连接BTNode* n1 = BuyBTNode(1);BTNode* n2 = BuyBTNode(2);BTNode* n3 = BuyBTNode(3);BTNode* n4 = BuyBTNode(4);BTNode* n5 = BuyBTNode(5);BTNode* n6 = BuyBTNode(6);n1->left = n2;n1->right = n4;n2->left = n3;n4->left = n5;n4->right = n6;return 0;
}

1.前序遍历

前序遍历:先访问根节点,再访问左子树,再访问右子树;

void PrevOrder (BTNode* root)

为了更好的理解前序遍历的规则,接下来展示一下详细步骤。

步骤详解

1.先访问根节点 (data = 1),再访问左子树; 

2.再访问左子树的根节点(data =  2),再访问左子树的左子树;

3.依旧先访问根节点(data = 3),此时 n3 节点的左右子树都为 NULL ,则不再往下递归,回到上一层;接着访问上一层的右子树;

4.因为 n2 节点的右子树为 NULL,所以继续返回上一层;访问上一层的右子树;

5.访问右子树的根节点(data = 4),再访问右子树的左子树;先左子树的根节点(data = 5),n5 节点的左右子树都为 NULL,返回上一层访问右子树(data = 6),同样 n6 节点的左右子树都为 NULL,返回上一层。

至此每个节点都访问完毕,总体的访问顺序是这样的:

按照访问顺序打印的结果应该是(空节点用 NULL 表示):

1 2 3 NULL NULL NULL 4 5 NULL NULL 6 NULL NULL 

代码实现

按照前序遍历的逻辑,前序遍历的实现肯定是离不开递归。

void PrevOrder(BTNode* root)
{if (root == NULL){ printf("NULL ");//空节点用 NULL 表示return; }printf("%d ", root->data);//前序在前PrevOrder(root->left);PrevOrder(root->right);
}

(凑合着看,有点丑陋hhhhh) 

运行程序,看结果是否与之前推理的结果一致:

int main()
{//手动申请节点加连接BTNode* n1 = BuyBTNode(1);BTNode* n2 = BuyBTNode(2);BTNode* n3 = BuyBTNode(3);BTNode* n4 = BuyBTNode(4);BTNode* n5 = BuyBTNode(5);BTNode* n6 = BuyBTNode(6);n1->left = n2;n1->right = n4;n2->left = n3;n4->left = n5;n4->right = n6;PrevOrder(n1);return 0;
}
//推理结果
1 2 3 NULL NULL NULL 4 5 NULL NULL 6 NULL NULL 

2.中序遍历

前中后序三种遍历大同小异,实现代码也几乎相同。

void InOrder(BTNode* root)

步骤详解

代码实现 

void InOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PrevOrder(root->left);printf("%d ", root->data);//中序在中PrevOrder(root->right);
}
//推理结果
NULL 3 NULL 2 NULL 1 NULL 5 NULL 4 NULL 6 NULL

3.后序遍历

步骤详解

参考1、2。

代码实现

void PostOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);//后序在后
}

相关文章:

二叉树的遍历(前序、中序、后序)| C语言

目录 0.写在前面 1.前序遍历 步骤详解 代码实现 2.中序遍历 步骤详解 代码实现 3.后序遍历 步骤详解 代码实现 0.写在前面 认识二叉树结构最简单的方式就是遍历二叉树。所谓遍历二叉树就是按照某种特定的规则,对二叉树的每一个节点进行访问,…...

【建议收藏】深入浅出Yolo目标检测算法(含Python实现源码)

深入浅出Yolo目标检测算法(含Python实现源码) 文章目录深入浅出Yolo目标检测算法(含Python实现源码)1. One-stage & Two-stage2. Yolo详解2.1 Yolo命名2.2 端到端输入输出2.3 Yolo中的标定框2.4 Yolo网络结构2.5 Yolo的算法流…...

Vue常见的事件修饰符

前言 vue一共给我们准备了6个事件修饰符,前三个比较常用,后三个少见,这里着重讲下前三个 1.prevent:阻止默认事件(常用) 2. stop:阻止事件冒泡(常用) 3. once:事件只触发一次(常用) 4.captrue:使用事件的捕捉模式(不常用) 5.self:只有event…...

【卷积神经网络】激活函数 | Tanh / Sigmoid / ReLU / Leaky ReLU / ELU / SiLU / GeLU

文章目录一、Tanh二、Sigmoid三、ReLU四、Leaky ReLU五、ELU六、SiLU七、Mish本文主要介绍卷积神经网络中常用的激活函数及其各自的优缺点 最简单的激活函数被称为线性激活,其中没有应用任何转换。 一个仅由线性激活函数组成的网络很容易训练,但不能学习…...

刷题记录:牛客NC24048[USACO 2017 Jan P]Promotion Counting 求子树的逆序对个数

传送门:牛客 题目描述 奶牛们又一次试图创建一家创业公司,还是没有从过去的经验中吸取教训–牛是可怕的管理者! 为了方便,把奶牛从 1∼n1\sim n1∼n 编号,把公司组织成一棵树,1 号奶牛作为总裁(这棵树的根…...

MpAndroidChart3最强实践攻略

本篇主要总结下Android非常火爆的一个三方库MpAndroidChart的使用。可能在大多数情况下,我们很少会在Android端去开发图表。但如果说去做一些金融财经类、工厂类、大数据类等的app,那么绝对会用到MpAndroidChart。 一、前言 2018年,那年的我…...

Spring笔记(9):事务管理ACID

一、事务管理 一个数据库事务是一个被视为单一的工作单元操作序列。 事务管理有四个原则,被成为ACID: Atomicity 原子性—— 事务作为独立单元进行操作,整个序列是一体的,操作全都成功或失败。Consistency 一致性—— 引用完整…...

io流 知识点+代码实例

需求 : 如何实现读写文件内部的内容?流 : 数据以先入先出的方式进行流动相当于管道,作用用来传输数据数据源-->流-->目的地流的分类 :流向分 : 以程序为中心输入流输出流操作单元 :字节流 : 万能流字符流 : 只能操作纯文本文件功能分 :节点流 : 真实实现读写的功能流(包…...

【MySQL】P8 多表查询(2) - 连接查询 联合查询

连接查询以及联合查询多表查询概述连接查询内连接隐式内连接显式内连接外连接左外连接右外连接自连接联合查询多表查询概述 建表语句见上一篇博文:https://blog.csdn.net/weixin_43098506/article/details/129402302 e.g.e.g.e.g. select * from emp, dept where e…...

QML动画(Animator)

在Qt5.2之后,引入Animator动画元素。这种方式可以直接所用于Qt Quick的场景图形系统,这使得基于Animator元素的动画及时在ui界面线程阻塞的情况下仍然能通过图形系统的渲染线程来工作,比传统的基于对象和属性的Animation元素能带来更好的用户…...

Git 分支操作【解决分支冲突问题】

1. 什么是分支 在版本控制过程中,同时推进多个任务,为每个任务,我们就可以创建每个任务的单独分支。使用分支意味着程序员可以把自己的工作从开发主线上分离开来,开发自己分支的时候,不会影响主线分支的运行。对于初学…...

盘点全球10大女性技术先驱

盘点全球10大女性技术先驱 人们普遍认为技术是男性主导的领域,但事实,技术或编程与性别无关,几乎任何人都可以成为技术大神。已经有很多案例证明女性同样可以在技术领域施展才能。在女神节来临之际,我为大家盘点一下为编程做出卓越…...

C++之dynamic_cast

C之dynamic_cast前言dynamic_castNote:示例:前言 dynamic_cast运算符牵扯到的面向对象的多态性跟程序运行时的状态,所以不能完全的使用传统的转换方式来替代。因此是最常用,最不可缺少的一个运算符,与static_cast一样,dynamic_cas…...

JavaScript 箭头函数、函数参数

箭头函数: 箭头函数是一种更加简洁的函数书写方式箭头函数本身没有作用域(无this)箭头函数的this指向上一层,上下文决定其this基本语法:参数 > 函数体 a. 基本用法 let fn v > v; //等价于 let fn function(…...

JavaScript_Object.keys() Object.values()

目录 一、Object.keys() 二、Object.values() 一、Object.keys() Object.keys( ) 的 用法 : 作用 &#xff1a;遍历对象 { } 返回结果&#xff1a;返回 对象中 每一项 的 key 值 返回值 : 是一个 *** [ 数 组 ] *** 例子 ( 1 ) : <script>// 1. 定义一个对象var obj …...

扬帆优配|高送转+高分红+高增长潜力股揭秘

高送转且高分红的高增加股票&#xff0c;有望跑赢大盘。 此前七连阴的泽宇智能&#xff0c;今日早盘大幅高开。到上午收盘&#xff0c;该股飙涨9.3%&#xff0c;位居涨幅榜前列。音讯面上&#xff0c;3月7日晚间&#xff0c;泽宇智能发表2022年年报&#xff0c;年报显现&#x…...

基于transformer的多帧自监督深度估计 Multi-Frame Self-Supervised Depth with Transformers

Multi-Frame Self-Supervised Depth with Transformers基于transformer的多帧自监督深度估计0 Abstract 多帧深度估计除了学习基于外观的特征外&#xff0c;也通过特征匹配利用图像之间的几何关系来改善单帧估计。我们采用深度离散的核极抽样来选择匹配像素&#xff0c;并通过一…...

设计模式: 单例模式

目录单例模式应用场景实现步骤涉及知识点设计与实现单例模式 通过单例模式的方法创建的类在当前进程中只有一个实例&#xff1b; 应用场景 配置管理 日志记录 线程池 连接池 内存池 对象池 消息队列 实现步骤 将类的构造方法定义为私有方法 定义一个私有的静态实例 提供一…...

idea编辑XML文件出现:Tag name expected报错

说明 Tag name expected解释其实就是&#xff1a;需要标记名称&#xff0c;也就是符号不能直接使用的意思 XML (eXtensible Markup Language) 是一种标记语言&#xff0c;用于存储和传输数据。在 XML 中&#xff0c;有些字符被视为特殊字符&#xff0c;这些字符在 XML 中具有…...

第十三届蓝桥杯省赛C++ A组 爬树的甲壳虫(简单概率DP)

题目如下&#xff1a; 思路 or 题解&#xff1a; 概率DP 状态定义&#xff1a; dp[i]dp[i]dp[i] 表示从树根到第 iii 层的期望 状态转移&#xff1a; dp[i](dp[i−1]1)∗11−pdp[i] (dp[i - 1] 1) * \frac{1}{1-p}dp[i](dp[i−1]1)∗1−p1​ 这个式子的意思是&#xff1a;…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...