当前位置: 首页 > news >正文

二叉树的遍历(前序、中序、后序)| C语言

目录

0.写在前面

1.前序遍历

步骤详解

代码实现

2.中序遍历

步骤详解

代码实现 

3.后序遍历

步骤详解

代码实现


0.写在前面

认识二叉树结构最简单的方式就是遍历二叉树。所谓遍历二叉树就是按照某种特定的规则,对二叉树的每一个节点进行访问,且每个节点只访问一次。

二叉树遍历的规则一般有四种:前序遍历、中序遍历、后序遍历和层序遍历。其中,前三种较为简单且实现方式大同小异。

        1.前序遍历:先访问根节点,再遍历左右子树;

        2.中序遍历:先遍历左子树,再访问根节点,再遍历右子树;

        3.后序遍历:先遍历左子树,再遍历右子树,再访问根节点。

简单记忆:前(根,左,右)、中(左,根,右)、后(左,右,根)。

在遍历二叉树之前,首先得拥有一棵二叉树。因为目前还没有学习如何构建二叉树,所以此处我们用最原始的办法——申请N个节点,将它们手动拼接为二叉树。

typedef int BTDataType;//二叉树节点的结构
typedef struct BTNode
{BTDataType data;struct BTNode* left;struct BTNode* right;
}BTNode;//定义一个申请新节点的函数
BTNode* BuyBTNode(BTDataType data)
{BTNode* newNode = (BTNode*)malloc(sizeof(BTNode));if (newNode == NULL){perror("malloc fail");exit(-1);}newNode->data = data;newNode->left = NULL;newNode->right = NULL;return newNode;}int main()
{//手动申请节点加连接BTNode* n1 = BuyBTNode(1);BTNode* n2 = BuyBTNode(2);BTNode* n3 = BuyBTNode(3);BTNode* n4 = BuyBTNode(4);BTNode* n5 = BuyBTNode(5);BTNode* n6 = BuyBTNode(6);n1->left = n2;n1->right = n4;n2->left = n3;n4->left = n5;n4->right = n6;return 0;
}

1.前序遍历

前序遍历:先访问根节点,再访问左子树,再访问右子树;

void PrevOrder (BTNode* root)

为了更好的理解前序遍历的规则,接下来展示一下详细步骤。

步骤详解

1.先访问根节点 (data = 1),再访问左子树; 

2.再访问左子树的根节点(data =  2),再访问左子树的左子树;

3.依旧先访问根节点(data = 3),此时 n3 节点的左右子树都为 NULL ,则不再往下递归,回到上一层;接着访问上一层的右子树;

4.因为 n2 节点的右子树为 NULL,所以继续返回上一层;访问上一层的右子树;

5.访问右子树的根节点(data = 4),再访问右子树的左子树;先左子树的根节点(data = 5),n5 节点的左右子树都为 NULL,返回上一层访问右子树(data = 6),同样 n6 节点的左右子树都为 NULL,返回上一层。

至此每个节点都访问完毕,总体的访问顺序是这样的:

按照访问顺序打印的结果应该是(空节点用 NULL 表示):

1 2 3 NULL NULL NULL 4 5 NULL NULL 6 NULL NULL 

代码实现

按照前序遍历的逻辑,前序遍历的实现肯定是离不开递归。

void PrevOrder(BTNode* root)
{if (root == NULL){ printf("NULL ");//空节点用 NULL 表示return; }printf("%d ", root->data);//前序在前PrevOrder(root->left);PrevOrder(root->right);
}

(凑合着看,有点丑陋hhhhh) 

运行程序,看结果是否与之前推理的结果一致:

int main()
{//手动申请节点加连接BTNode* n1 = BuyBTNode(1);BTNode* n2 = BuyBTNode(2);BTNode* n3 = BuyBTNode(3);BTNode* n4 = BuyBTNode(4);BTNode* n5 = BuyBTNode(5);BTNode* n6 = BuyBTNode(6);n1->left = n2;n1->right = n4;n2->left = n3;n4->left = n5;n4->right = n6;PrevOrder(n1);return 0;
}
//推理结果
1 2 3 NULL NULL NULL 4 5 NULL NULL 6 NULL NULL 

2.中序遍历

前中后序三种遍历大同小异,实现代码也几乎相同。

void InOrder(BTNode* root)

步骤详解

代码实现 

void InOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PrevOrder(root->left);printf("%d ", root->data);//中序在中PrevOrder(root->right);
}
//推理结果
NULL 3 NULL 2 NULL 1 NULL 5 NULL 4 NULL 6 NULL

3.后序遍历

步骤详解

参考1、2。

代码实现

void PostOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);//后序在后
}

相关文章:

二叉树的遍历(前序、中序、后序)| C语言

目录 0.写在前面 1.前序遍历 步骤详解 代码实现 2.中序遍历 步骤详解 代码实现 3.后序遍历 步骤详解 代码实现 0.写在前面 认识二叉树结构最简单的方式就是遍历二叉树。所谓遍历二叉树就是按照某种特定的规则,对二叉树的每一个节点进行访问,…...

【建议收藏】深入浅出Yolo目标检测算法(含Python实现源码)

深入浅出Yolo目标检测算法(含Python实现源码) 文章目录深入浅出Yolo目标检测算法(含Python实现源码)1. One-stage & Two-stage2. Yolo详解2.1 Yolo命名2.2 端到端输入输出2.3 Yolo中的标定框2.4 Yolo网络结构2.5 Yolo的算法流…...

Vue常见的事件修饰符

前言 vue一共给我们准备了6个事件修饰符,前三个比较常用,后三个少见,这里着重讲下前三个 1.prevent:阻止默认事件(常用) 2. stop:阻止事件冒泡(常用) 3. once:事件只触发一次(常用) 4.captrue:使用事件的捕捉模式(不常用) 5.self:只有event…...

【卷积神经网络】激活函数 | Tanh / Sigmoid / ReLU / Leaky ReLU / ELU / SiLU / GeLU

文章目录一、Tanh二、Sigmoid三、ReLU四、Leaky ReLU五、ELU六、SiLU七、Mish本文主要介绍卷积神经网络中常用的激活函数及其各自的优缺点 最简单的激活函数被称为线性激活,其中没有应用任何转换。 一个仅由线性激活函数组成的网络很容易训练,但不能学习…...

刷题记录:牛客NC24048[USACO 2017 Jan P]Promotion Counting 求子树的逆序对个数

传送门:牛客 题目描述 奶牛们又一次试图创建一家创业公司,还是没有从过去的经验中吸取教训–牛是可怕的管理者! 为了方便,把奶牛从 1∼n1\sim n1∼n 编号,把公司组织成一棵树,1 号奶牛作为总裁(这棵树的根…...

MpAndroidChart3最强实践攻略

本篇主要总结下Android非常火爆的一个三方库MpAndroidChart的使用。可能在大多数情况下,我们很少会在Android端去开发图表。但如果说去做一些金融财经类、工厂类、大数据类等的app,那么绝对会用到MpAndroidChart。 一、前言 2018年,那年的我…...

Spring笔记(9):事务管理ACID

一、事务管理 一个数据库事务是一个被视为单一的工作单元操作序列。 事务管理有四个原则,被成为ACID: Atomicity 原子性—— 事务作为独立单元进行操作,整个序列是一体的,操作全都成功或失败。Consistency 一致性—— 引用完整…...

io流 知识点+代码实例

需求 : 如何实现读写文件内部的内容?流 : 数据以先入先出的方式进行流动相当于管道,作用用来传输数据数据源-->流-->目的地流的分类 :流向分 : 以程序为中心输入流输出流操作单元 :字节流 : 万能流字符流 : 只能操作纯文本文件功能分 :节点流 : 真实实现读写的功能流(包…...

【MySQL】P8 多表查询(2) - 连接查询 联合查询

连接查询以及联合查询多表查询概述连接查询内连接隐式内连接显式内连接外连接左外连接右外连接自连接联合查询多表查询概述 建表语句见上一篇博文:https://blog.csdn.net/weixin_43098506/article/details/129402302 e.g.e.g.e.g. select * from emp, dept where e…...

QML动画(Animator)

在Qt5.2之后,引入Animator动画元素。这种方式可以直接所用于Qt Quick的场景图形系统,这使得基于Animator元素的动画及时在ui界面线程阻塞的情况下仍然能通过图形系统的渲染线程来工作,比传统的基于对象和属性的Animation元素能带来更好的用户…...

Git 分支操作【解决分支冲突问题】

1. 什么是分支 在版本控制过程中,同时推进多个任务,为每个任务,我们就可以创建每个任务的单独分支。使用分支意味着程序员可以把自己的工作从开发主线上分离开来,开发自己分支的时候,不会影响主线分支的运行。对于初学…...

盘点全球10大女性技术先驱

盘点全球10大女性技术先驱 人们普遍认为技术是男性主导的领域,但事实,技术或编程与性别无关,几乎任何人都可以成为技术大神。已经有很多案例证明女性同样可以在技术领域施展才能。在女神节来临之际,我为大家盘点一下为编程做出卓越…...

C++之dynamic_cast

C之dynamic_cast前言dynamic_castNote:示例:前言 dynamic_cast运算符牵扯到的面向对象的多态性跟程序运行时的状态,所以不能完全的使用传统的转换方式来替代。因此是最常用,最不可缺少的一个运算符,与static_cast一样,dynamic_cas…...

JavaScript 箭头函数、函数参数

箭头函数: 箭头函数是一种更加简洁的函数书写方式箭头函数本身没有作用域(无this)箭头函数的this指向上一层,上下文决定其this基本语法:参数 > 函数体 a. 基本用法 let fn v > v; //等价于 let fn function(…...

JavaScript_Object.keys() Object.values()

目录 一、Object.keys() 二、Object.values() 一、Object.keys() Object.keys( ) 的 用法 : 作用 &#xff1a;遍历对象 { } 返回结果&#xff1a;返回 对象中 每一项 的 key 值 返回值 : 是一个 *** [ 数 组 ] *** 例子 ( 1 ) : <script>// 1. 定义一个对象var obj …...

扬帆优配|高送转+高分红+高增长潜力股揭秘

高送转且高分红的高增加股票&#xff0c;有望跑赢大盘。 此前七连阴的泽宇智能&#xff0c;今日早盘大幅高开。到上午收盘&#xff0c;该股飙涨9.3%&#xff0c;位居涨幅榜前列。音讯面上&#xff0c;3月7日晚间&#xff0c;泽宇智能发表2022年年报&#xff0c;年报显现&#x…...

基于transformer的多帧自监督深度估计 Multi-Frame Self-Supervised Depth with Transformers

Multi-Frame Self-Supervised Depth with Transformers基于transformer的多帧自监督深度估计0 Abstract 多帧深度估计除了学习基于外观的特征外&#xff0c;也通过特征匹配利用图像之间的几何关系来改善单帧估计。我们采用深度离散的核极抽样来选择匹配像素&#xff0c;并通过一…...

设计模式: 单例模式

目录单例模式应用场景实现步骤涉及知识点设计与实现单例模式 通过单例模式的方法创建的类在当前进程中只有一个实例&#xff1b; 应用场景 配置管理 日志记录 线程池 连接池 内存池 对象池 消息队列 实现步骤 将类的构造方法定义为私有方法 定义一个私有的静态实例 提供一…...

idea编辑XML文件出现:Tag name expected报错

说明 Tag name expected解释其实就是&#xff1a;需要标记名称&#xff0c;也就是符号不能直接使用的意思 XML (eXtensible Markup Language) 是一种标记语言&#xff0c;用于存储和传输数据。在 XML 中&#xff0c;有些字符被视为特殊字符&#xff0c;这些字符在 XML 中具有…...

第十三届蓝桥杯省赛C++ A组 爬树的甲壳虫(简单概率DP)

题目如下&#xff1a; 思路 or 题解&#xff1a; 概率DP 状态定义&#xff1a; dp[i]dp[i]dp[i] 表示从树根到第 iii 层的期望 状态转移&#xff1a; dp[i](dp[i−1]1)∗11−pdp[i] (dp[i - 1] 1) * \frac{1}{1-p}dp[i](dp[i−1]1)∗1−p1​ 这个式子的意思是&#xff1a;…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解&#xff0c;涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容&#xff0c;并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念&#xff08;ACID&#xff09; 事务是…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

pgsql:还原数据库后出现重复序列导致“more than one owned sequence found“报错问题的解决

问题&#xff1a; pgsql数据库通过备份数据库文件进行还原时&#xff0c;如果表中有自增序列&#xff0c;还原后可能会出现重复的序列&#xff0c;此时若向表中插入新行时会出现“more than one owned sequence found”的报错提示。 点击菜单“其它”-》“序列”&#xff0c;…...

从数据报表到决策大脑:AI重构电商决策链条

在传统电商运营中&#xff0c;决策链条往往止步于“数据报表层”&#xff1a;BI工具整合历史数据&#xff0c;生成滞后一周甚至更久的销售分析&#xff0c;运营团队凭经验预判需求。当爆款突然断货、促销库存积压时&#xff0c;企业才惊觉标准化BI的决策时差正成为增长瓶颈。 一…...

dvwa11——XSS(Reflected)

LOW 分析源码&#xff1a;无过滤 和上一关一样&#xff0c;这一关在输入框内输入&#xff0c;成功回显 <script>alert(relee);</script> MEDIUM 分析源码&#xff0c;是把<script>替换成了空格&#xff0c;但没有禁用大写 改大写即可&#xff0c;注意函数…...

项目研究:使用 LangGraph 构建智能客服代理

概述 本教程展示了如何使用 LangGraph 构建一个智能客服代理。LangGraph 是一个强大的工具&#xff0c;可用于构建复杂的语言模型工作流。该代理可以自动分类用户问题、分析情绪&#xff0c;并根据需要生成回应或升级处理。 背景动机 在当今节奏飞快的商业环境中&#xff0c…...

开源项目实战学习之YOLO11:12.6 ultralytics-models-tiny_encoder.py

👉 欢迎关注,了解更多精彩内容 👉 欢迎关注,了解更多精彩内容 👉 欢迎关注,了解更多精彩内容 ultralytics-models-sam 1.sam-modules-tiny_encoder.py2.数据处理流程3.代码架构图(类层次与依赖)blocks.py: 定义模型中的各种模块结构 ,如卷积块、残差块等基础构建…...

智能照明系统:具备认知能力的“光神经网络”

智能照明系统是物联网技术与传统照明深度融合的产物&#xff0c;其本质是通过感知环境、解析需求、自主决策的闭环控制&#xff0c;重构光与人、空间、环境的关系。这一系统由智能光源、多维传感器、边缘计算单元及云端管理平台构成&#xff0c;形成具备认知能力的“光神经网络…...