当前位置: 首页 > news >正文

【LeetCode——排序链表】

文章目录

  • 排序链表
    • 二、解题思路:
    • 二.实现的代码
    • 总结:

排序链表

一道链表排序题,链接在这里

在这里插入图片描述

二、解题思路:

解题思路:使用归并排序(用递归实现)

第一步:先找到链表的中间节点
在这里插入图片描述

第二步:将链表从中间节点开始断开

在这里插入图片描述

找到mid节点(中间节点)的前一个节点,将两个链表断开。

第三步:重复上述操作,再在新链表中找中间节点,再分开,直到分开到链表剩下一个节点为止。

在这里插入图片描述
第四步,合并链表。

举个例子:
给两个链表:一个是1->2->3->4,一个链表是0->2->3->5
将这两个有序链表合并成一个有序链表。

在这里插入图片描述
申请一个哨兵位的头节点,不存储有效数据,然后使用l1,l2来遍历两个链表,比较l1和l2存储的值的大小。

回到上面的题,两个节点之间两两比较,只要满足升序要求即可。
合并俩节点后,再合并两个链表。
在这里插入图片描述

总效果如下图:
在这里插入图片描述

二.实现的代码


```c
typedef struct ListNode ListNode;ListNode*midNode(ListNode*head)
{ListNode*fast = head,*slow = head;while(fast && fast->next){fast = fast->next->next;slow = slow->next;}return slow;
}//合并链表
ListNode*mergelist(ListNode*head1,ListNode*head2)
{ListNode*newhead = (ListNode*)malloc(sizeof(ListNode));ListNode*l1 = head1,*l2 = head2,*tail = newhead;while(l1 && l2){if(l1->val <= l2->val){tail->next = l1;l1 = l1->next;}else{tail->next = l2;l2 = l2->next;}tail = tail->next;}if(l1!=NULL){tail->next = l1;}if(l2!=NULL){tail->next = l2;}ListNode*ret = newhead->next;free(newhead);return ret;
}ListNode*tosortList(ListNode*head)
{//空链表和只有一个节点不用再排序了if(head==NULL ||head->next == NULL){return head;}//找中间节点ListNode*mid = midNode(head);//找中间节点的前一个节点ListNode*prev = head;while(prev->next!=mid){prev = prev->next;}//断开链表prev->next = NULL;//返回排序后的新链表的头ListNode*left = tosortList(head);ListNode*right = tosortList(mid);return mergelist(left,right);
}struct ListNode* sortList(struct ListNode* head)
{return tosortList(head);
}

总结:

使用归并排序是解题的较好的方法。

相关文章:

【LeetCode——排序链表】

文章目录排序链表二、解题思路&#xff1a;二.实现的代码总结&#xff1a;排序链表 一道链表排序题&#xff0c;链接在这里 二、解题思路&#xff1a; 解题思路&#xff1a;使用归并排序&#xff08;用递归实现&#xff09; 第一步&#xff1a;先找到链表的中间节点 第二步…...

二叉树的遍历(前序、中序、后序)| C语言

目录 0.写在前面 1.前序遍历 步骤详解 代码实现 2.中序遍历 步骤详解 代码实现 3.后序遍历 步骤详解 代码实现 0.写在前面 认识二叉树结构最简单的方式就是遍历二叉树。所谓遍历二叉树就是按照某种特定的规则&#xff0c;对二叉树的每一个节点进行访问&#xff0c;…...

【建议收藏】深入浅出Yolo目标检测算法(含Python实现源码)

深入浅出Yolo目标检测算法&#xff08;含Python实现源码&#xff09; 文章目录深入浅出Yolo目标检测算法&#xff08;含Python实现源码&#xff09;1. One-stage & Two-stage2. Yolo详解2.1 Yolo命名2.2 端到端输入输出2.3 Yolo中的标定框2.4 Yolo网络结构2.5 Yolo的算法流…...

Vue常见的事件修饰符

前言 vue一共给我们准备了6个事件修饰符&#xff0c;前三个比较常用&#xff0c;后三个少见&#xff0c;这里着重讲下前三个 1.prevent:阻止默认事件(常用) 2. stop:阻止事件冒泡(常用) 3. once:事件只触发一次(常用) 4.captrue:使用事件的捕捉模式(不常用) 5.self:只有event…...

【卷积神经网络】激活函数 | Tanh / Sigmoid / ReLU / Leaky ReLU / ELU / SiLU / GeLU

文章目录一、Tanh二、Sigmoid三、ReLU四、Leaky ReLU五、ELU六、SiLU七、Mish本文主要介绍卷积神经网络中常用的激活函数及其各自的优缺点 最简单的激活函数被称为线性激活&#xff0c;其中没有应用任何转换。 一个仅由线性激活函数组成的网络很容易训练&#xff0c;但不能学习…...

刷题记录:牛客NC24048[USACO 2017 Jan P]Promotion Counting 求子树的逆序对个数

传送门:牛客 题目描述 奶牛们又一次试图创建一家创业公司&#xff0c;还是没有从过去的经验中吸取教训–牛是可怕的管理者&#xff01; 为了方便&#xff0c;把奶牛从 1∼n1\sim n1∼n 编号&#xff0c;把公司组织成一棵树&#xff0c;1 号奶牛作为总裁&#xff08;这棵树的根…...

MpAndroidChart3最强实践攻略

本篇主要总结下Android非常火爆的一个三方库MpAndroidChart的使用。可能在大多数情况下&#xff0c;我们很少会在Android端去开发图表。但如果说去做一些金融财经类、工厂类、大数据类等的app&#xff0c;那么绝对会用到MpAndroidChart。 一、前言 2018年&#xff0c;那年的我…...

Spring笔记(9):事务管理ACID

一、事务管理 一个数据库事务是一个被视为单一的工作单元操作序列。 事务管理有四个原则&#xff0c;被成为ACID&#xff1a; Atomicity 原子性—— 事务作为独立单元进行操作&#xff0c;整个序列是一体的&#xff0c;操作全都成功或失败。Consistency 一致性—— 引用完整…...

io流 知识点+代码实例

需求 : 如何实现读写文件内部的内容?流 : 数据以先入先出的方式进行流动相当于管道,作用用来传输数据数据源-->流-->目的地流的分类 :流向分 : 以程序为中心输入流输出流操作单元 :字节流 : 万能流字符流 : 只能操作纯文本文件功能分 :节点流 : 真实实现读写的功能流(包…...

【MySQL】P8 多表查询(2) - 连接查询 联合查询

连接查询以及联合查询多表查询概述连接查询内连接隐式内连接显式内连接外连接左外连接右外连接自连接联合查询多表查询概述 建表语句见上一篇博文&#xff1a;https://blog.csdn.net/weixin_43098506/article/details/129402302 e.g.e.g.e.g. select * from emp, dept where e…...

QML动画(Animator)

在Qt5.2之后&#xff0c;引入Animator动画元素。这种方式可以直接所用于Qt Quick的场景图形系统&#xff0c;这使得基于Animator元素的动画及时在ui界面线程阻塞的情况下仍然能通过图形系统的渲染线程来工作&#xff0c;比传统的基于对象和属性的Animation元素能带来更好的用户…...

Git 分支操作【解决分支冲突问题】

1. 什么是分支 在版本控制过程中&#xff0c;同时推进多个任务&#xff0c;为每个任务&#xff0c;我们就可以创建每个任务的单独分支。使用分支意味着程序员可以把自己的工作从开发主线上分离开来&#xff0c;开发自己分支的时候&#xff0c;不会影响主线分支的运行。对于初学…...

盘点全球10大女性技术先驱

盘点全球10大女性技术先驱 人们普遍认为技术是男性主导的领域&#xff0c;但事实&#xff0c;技术或编程与性别无关&#xff0c;几乎任何人都可以成为技术大神。已经有很多案例证明女性同样可以在技术领域施展才能。在女神节来临之际&#xff0c;我为大家盘点一下为编程做出卓越…...

C++之dynamic_cast

C之dynamic_cast前言dynamic_castNote:示例:前言 dynamic_cast运算符牵扯到的面向对象的多态性跟程序运行时的状态&#xff0c;所以不能完全的使用传统的转换方式来替代。因此是最常用&#xff0c;最不可缺少的一个运算符&#xff0c;与static_cast一样&#xff0c;dynamic_cas…...

JavaScript 箭头函数、函数参数

箭头函数&#xff1a; 箭头函数是一种更加简洁的函数书写方式箭头函数本身没有作用域&#xff08;无this&#xff09;箭头函数的this指向上一层&#xff0c;上下文决定其this基本语法&#xff1a;参数 > 函数体 a. 基本用法 let fn v > v; //等价于 let fn function(…...

JavaScript_Object.keys() Object.values()

目录 一、Object.keys() 二、Object.values() 一、Object.keys() Object.keys( ) 的 用法 : 作用 &#xff1a;遍历对象 { } 返回结果&#xff1a;返回 对象中 每一项 的 key 值 返回值 : 是一个 *** [ 数 组 ] *** 例子 ( 1 ) : <script>// 1. 定义一个对象var obj …...

扬帆优配|高送转+高分红+高增长潜力股揭秘

高送转且高分红的高增加股票&#xff0c;有望跑赢大盘。 此前七连阴的泽宇智能&#xff0c;今日早盘大幅高开。到上午收盘&#xff0c;该股飙涨9.3%&#xff0c;位居涨幅榜前列。音讯面上&#xff0c;3月7日晚间&#xff0c;泽宇智能发表2022年年报&#xff0c;年报显现&#x…...

基于transformer的多帧自监督深度估计 Multi-Frame Self-Supervised Depth with Transformers

Multi-Frame Self-Supervised Depth with Transformers基于transformer的多帧自监督深度估计0 Abstract 多帧深度估计除了学习基于外观的特征外&#xff0c;也通过特征匹配利用图像之间的几何关系来改善单帧估计。我们采用深度离散的核极抽样来选择匹配像素&#xff0c;并通过一…...

设计模式: 单例模式

目录单例模式应用场景实现步骤涉及知识点设计与实现单例模式 通过单例模式的方法创建的类在当前进程中只有一个实例&#xff1b; 应用场景 配置管理 日志记录 线程池 连接池 内存池 对象池 消息队列 实现步骤 将类的构造方法定义为私有方法 定义一个私有的静态实例 提供一…...

idea编辑XML文件出现:Tag name expected报错

说明 Tag name expected解释其实就是&#xff1a;需要标记名称&#xff0c;也就是符号不能直接使用的意思 XML (eXtensible Markup Language) 是一种标记语言&#xff0c;用于存储和传输数据。在 XML 中&#xff0c;有些字符被视为特殊字符&#xff0c;这些字符在 XML 中具有…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...