当前位置: 首页 > news >正文

YOLOv5 V7.0 - rknn模型的验证 输出精度(P)、召回率(R)、mAP50、mAP50-95

1.简介

RKNN官方没有提供YOLOv5模型的验证工具,而YOLOv5自带的验证工具只能验证pytorch、ONNX等常见格式的模型性能,无法运行rknn格式。考虑到YOLOv5模型转换为rknn会有一定的精度损失,但是需要具体数值才能进行评估,所以需要一个可以运行rknn格式的YOLOv5验证工具。

参考目标检测 YOLOv5 - Rockchip rknn模型的测试 包括精度,召回率,mAP等详细信息,这篇文章中的验证工具是基于YOLOv5和RKNN开发环境的旧版本来开发的(YOLOv5 V6.2和rknn-toolkit v1.7.1),无法运行基于YOLOv5 v7.0和rknn-toolkit2 v1.6.0开发的RKNN模型,所以参考这个验证工具里面的RKNN模型的使用方式,和RKNN官方的Python Demo,实现了YOLOv5 V7.0版本的rknn验证工具。

GitHub源码地址:https://github.com/shiyinghan/yolov5_7.0_val_rknn

2.使用方法

2.1 配置RKNN开发环境

参考RKNN-Toolkit2 里面v1.6.0的Quick Start 文档 的第三章“准备开发环境”,安装 RKNN-Toolkit2环境和板端 RKNPU2环境(不确定rknn-toolkit2的其他版本的环境好不好使,工具参考的是rknn-toolkit2的v1.6.0的Python Demo)。
Quick Start 文档 :01_Rockchip_RKNPU_Quick_Start_RKNN_SDK_V1.6.0_CN.pdf

2.2 配置YOLOv5 V7.0的运行环境

下载YOLOv5的v7.0版本并解压,然后下载yolov5_7.0_val_rknn解压并覆盖YOLOv5原版V7.0的文件夹。最后安装YOLOv5 V7.0需要的python依赖库,这里需要注意上一步配置RKNN开发环境的时候,可能安装一下老版本的python依赖库,直接使用YOLOv5 V7.0的requirements.txt安装依赖库可能出现错误,需要手动指定依赖库的版本。

2.3 设置data文件夹下面的yaml配置文件

为了区分原版的val.py,本验证工具使用的时候,需要指定task为test,所以配置文件也需要指定test目录的路径,如下:
在这里插入图片描述

2.4 连接开发板(必须)

本验证工具不支持模拟器运行,需要连接实机进行测试,否则会提示以下错误:
在这里插入图片描述
命令行里面target参数也需要配置为对应的参数,这里使用的是RK3568开发板,所以target设置为’RK3568’。

2.5 运行验证工具

命令行如下:

python val_rknn.py --data coco128_rknn.yaml --batch-size 1 --task 'test'  --weights ./yolov5s-int8.rknn --target 'RK3568'  --anchors ./anchors_yolov5.txt

3.运行效果

yolov5s量化版本rknn模型:
在这里插入图片描述
在这里插入图片描述
yolov5s非量化版本rknn模型:
在这里插入图片描述
在这里插入图片描述
yolov5s原版pt模型:
在这里插入图片描述
在这里插入图片描述

4.结论

类型精度召回率mAP50mAP50-95
pt模型0.7190.6250.7140.475
RKNN量化版0.6880.6550.6990.455
RKNN非量化版0.690.6310.6950.45

可以看出,对比pt原版模型,转换好的rknn的量化和非量化版本的模型精度和mAP都有一些下降。使用rknn模型的项目中,pt原版模型的性能参数只能作为一个参考,需要实际算出rknn模型的性能参数才行。

相关文章:

YOLOv5 V7.0 - rknn模型的验证 输出精度(P)、召回率(R)、mAP50、mAP50-95

1.简介 RKNN官方没有提供YOLOv5模型的验证工具,而YOLOv5自带的验证工具只能验证pytorch、ONNX等常见格式的模型性能,无法运行rknn格式。考虑到YOLOv5模型转换为rknn会有一定的精度损失,但是需要具体数值才能进行评估,所以需要一个…...

CUDA、CUDNN、Pytorch三者之间的关系

这个东西嘛,我一开始真的是一头雾水,安装起来真是麻烦死了。但是随着要复现的项目越来越多,我也不得不去学会他们是什么,以及他们之间的关系。 首先,一台电脑里面允许有多种版本的cuda存在,然后cuda分为run…...

vue-cli2,vue-cli3,vite 生产环境去掉console.log

console.log一般都是在开发环境下使用的,在生产环境下需要去除 ,如果手动删除未免也太累了,我们可以用插件对于具体环境全局处理。 vue-cli2 项目build 下面webpack.prod.config.js 文件中: plugins: [new webpack.DefinePlugin({process.en…...

Docker-Compose编排LNMP并部署WordPress

前言 随着云计算和容器化技术的快速发展,使用 Docker Compose 编排 LNMP 环境已经成为快速部署 Web 应用程序的一种流行方式。LNMP 环境由 Linux、Nginx、MySQL 和 PHP 组成,为运行 Web 应用提供了稳定的基础。本文将介绍如何通过 Docker Compose 编排 …...

附录C:招聘流程

< 回到目录 附录C&#xff1a;招聘流程 _xxx_公司的招聘 使命 只雇佣顶级人才。 他们是能够胜任工作&#xff0c;并与 _&#xff08;你的公司名称&#xff09;_ 的企业文化相匹配的超级明星。 方法 记分卡。招聘经理创建一份文件&#xff0c;详细描述此职位的工作内容…...

1688快速获取整店铺列表 采集接口php Python

在电子商务的浪潮中&#xff0c;1688平台作为中国领先的批发交易平台&#xff0c;为广大商家提供了一个展示和销售商品的广阔舞台&#xff1b;然而&#xff0c;要在众多店铺中脱颖而出&#xff0c;快速获取商品列表并进行有效营销是关键。 竞争对手分析 价格比较&#xff1a;…...

CTF-WEB(MISC)

安全攻防知识——CTF之MISC - 知乎 CTF之MISC杂项从入门到放弃_ctf杂项 你的名字-CSDN博客 CTF MICS笔记总结_archpr 掩码攻击-CSDN博客 一、图片隐写 CTF杂项---文件类型识别、分离、合并、隐写_ctf图片分离-CSDN博客 EXIF&#xff08;Exchangeable Image File&#xff09;是…...

Ubuntu如何更换 PyTorch 版本

环境&#xff1a; Ubuntu22.04 WLS2 问题描述&#xff1a; Ubuntu如何更换 PyTorch 版本考虑安装一个为 CUDA 11.5 编译的 PyTorch 版本。如何安装旧版本 解决方案&#xff1a; 决定不升级CUDA版本&#xff0c;而是使用一个与CUDA 11.5兼容的PyTorch版本&#xff0c;您可…...

python flask css样式无效

解释&#xff1a; Flask是一个Python的轻量级Web框架&#xff0c;它没有为CSS提供任何内置的支持。如果你在Flask项目中引入了CSS文件&#xff0c;但是这个CSS没有生效&#xff0c;可能的原因有&#xff1a; 路径不正确&#xff1a;你的CSS文件没有放在正确的目录下&#xff0…...

大数据学习笔记14-Hive基础2

一、数据字段类型 数据类型 &#xff1a;LanguageManual Types - Apache Hive - Apache Software Foundation 基本数据类型 数值相关类型 整数 tinyint smallint int bigint 小数 float double decimal 精度最高 日期类型 date 日期 timestamps 日期时间 字符串类型 s…...

vue3 下载图片(包括多图片下载)

单图片下载 //使用 download(https://img1.baidu.com/it/u1493209339,2544178769&fm253&app138&sizew931&n0&fJPEG&fmtauto?sec1715101200&t854f3434686cfd2cba9d6a528597d15c)//下载逻辑 const download async (modelUrl) > {const respons…...

LabVIEW如何通过子VI更改主VI控件属性?

在LabVIEW中&#xff0c;可以通过使用Local Variable或Property Node来实现主VI控件属性的更改。这些方法可以在主VI和子VI之间传递数据和控件属性。 Local Variable: 使用Local Variable可以在子VI中直接访问并修改主VI中的控件属性。在子VI中创建Local Variable&#xff0c;并…...

关于MS-DOS时代的回忆

目录 一、MS-DOS是什么&#xff1f; 二、MS-DOS的主要功能有哪些&#xff1f; 三、MS-DOS的怎么运行的&#xff1f; 四、微软开源MS-DOS源代码 五、高手与漂亮女同学 一、MS-DOS是什么&#xff1f; MS-DOS&#xff08;Microsoft Disk Operating System&#xff09;是微软公…...

数据库索引(Mysql)

简述:数据库索引是加速数据检索,提高查询效率的一种数据结构 语法规则 创建索引 --通用语法规则 --[内容] 可选参数 --UNIQUE: 可选关键字&#xff0c;用于创建唯一索引&#xff0c;确保索引列的值是唯一的 CREATE [UNIQUE] INDEX 索引名 ON 表名(字段名,...) [ASC | DESC];…...

异常-Exception

异常介绍 基本概念 Java语言中&#xff0c;将程序执行中发生的不正常情况称为“异常”。&#xff08;开发过程中的语法错误和逻辑错误不是异常&#xff09;执行过程中所发生的异常事件可分为两大类 1&#xff0c;Error&#xff08;错误&#xff09;&#xff1a;Java虚拟机无法…...

ctfshow——SQL注入

文章目录 SQL注入基本流程普通SQL注入布尔盲注时间盲注报错注入——extractvalue()报错注入——updataxml()Sqlmap的用法 web 171——正常联合查询web 172——查看源代码、联合查询web 173——查看源代码、联合查询web 174——布尔盲注web 176web 177——过滤空格web 178——过…...

第十三章 计算机网络

这里写目录标题 1.网络设备2.协议簇2.1电子邮件(传输层)2.2地址解析(网际层)2.3DHCP(动态主动配置协议)2.4URL(统一资源定位器)2.5IP地址和子网掩码 1.网络设备 物理层&#xff1a;中继器&#xff0c;集线器(多路中继器) 数据链路层&#xff1a;网桥&#xff0c;交换机(多端口…...

商品详情 API 返回值说明

商品详情API接口在多个领域和场景中都有广泛的应用&#xff0c;以下是一些常见的应用场景&#xff1a; 竞品分析&#xff1a;企业可以利用商品详情API接口获取竞品的所有详细信息&#xff0c;如价格、发货地、上架时间、销售量等。通过分析这些竞品信息&#xff0c;企业可以更…...

层级实例化静态网格体组件:开启大量模型处理之门

前言 在数字孪生的世界里&#xff0c;我们常常需要构建大量的模型来呈现真实而丰富的场景。然而&#xff0c;当使用静态网格体 &#xff08;StaticMesh &#xff09;构建大量模型时&#xff0c;可能会遇到卡顿的问题&#xff0c;这给我们带来了不小的困扰&#x1f623;。那么&…...

【网络知识】光猫、路由器 和 交换机 的作用和区别?

数字信号&#xff1a;是指自变量是离散的、因变量也是离散的信号&#xff0c;这种信号的自变量用整数表示&#xff0c;因变量用有限数字中的一个数字来表示。在计算机中&#xff0c;数字信号的大小常用有限位的二进制数表示。 模拟信号&#xff1a;模拟信号是指用连续变化的物…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...