当前位置: 首页 > news >正文

SparkSQL与Hive整合 、SparkSQL函数操作

SparkSQL与Hive整合

SparkSQL和Hive的整合,是一种比较常见的关联处理方式,SparkSQL加载Hive中的数据进行业务处理,同时将计算结果落地回Hive中。

整合需要注意的地方

1)需要引入hive的hive-site.xml,添加classpath目录下面即可,或者放到$SPARK_HOME/conf。

2)为了能够正常解析hive-site.xml中hdfs路径,需要将hdfs-site.xml和core-site.xml到classpath下面。整合编码如下:

object Hive_Support {def main(args: Array[String]): Unit = {//创建sparkSql程序入口val spark: SparkSession = SparkSession.builder().appName("demo").master("local[*]").enableHiveSupport().getOrCreate()//调用sparkContextval sc: SparkContext = spark.sparkContext//设置日志级别sc.setLogLevel("WARN")//导包import spark.implicits._//查询hive当中的表spark.sql("show tables").show()//创建表spark.sql("CREATE TABLE person (id int, name string, age int) row format delimited fields terminated by ' '")//导入数据spark.sql("load data local inpath'./person.txt' into table person")//查询表当中数据spark.sql("select * from person").show()}
}

SparkSQL函数操作

函数的定义

SQL中函数,其实说白了就是各大编程语言中的函数,或者方法,就是对某一特定功能的封装,通过它可以完成较为复杂的统计。这里的函数的学习,就基于Hive中的函数来学习。

函数的分类

函数的分类方式非常多,主要从功能和实现方式上进行区分。

实现方式上分类

1)UDF(User Defined function)用户自定义函数:一路输入,一路输出,比如year,date_add, instr。

2)UDAF(User Defined aggregation function)用户自定义聚合函数:多路输入,一路输出,常见的聚合函数:count、sum、collect_list。

3)UDTF(User Defined table function)用户自定义表函数:一路输入,多路输出,explode。

4)开窗函数:row_number(),sum/max/min over。

用户自定义函数

当系统提供的这些函数,满足不了我们的需要的话,就只能进行自定义相关的函数,一般自定义的函数两种,UDF和UDAF。

1)UDF:一路输入,一路输出,完成就是基于scala函数。

通过模拟获取字符串长度的udf来学习自定义udf操作。

object UDF_Demo {def main(args: Array[String]): Unit = {//创建sparkSql程序入口val spark: SparkSession = SparkSession.builder().appName("demo").master("local[*]").getOrCreate()//调用sparkContextval sc: SparkContext = spark.sparkContext//设置日志级别sc.setLogLevel("WARN")//导包import spark.implicits._//加载文件val personDF: DataFrame = spark.read.json("E:\\data\\people.json")//展示数据//personDF.show()//注册成为一张表personDF.createOrReplaceTempView("t_person")//赋予什么功能val fun = (x:String)=>{"Name:"+x}//没有addName这个函数,就注册它spark.udf.register("addName",fun)//查询spark.sql("select name,addName(name) from t_person").show()//释放资源spark.stop()}}

2)开窗函数:over()开窗函数是按照某个字段分组,然后查询出另一字段的前几个的值,相当于分组取topN。

row_number() over (partitin by XXX order by XXX)

rank() 跳跃排序,有两个第二名是,后边跟着的是第四名

dense_rank()  连续排序,有两个第二名是,后边跟着的是第三名

row_number() 连续排序,两个值相同排序也是不同

在使用聚合函数后,会将多行变成一行,而over()开窗函数其实就是给每个分组的数据,按照其排序的顺序,打上一个分组内的行号,直接将所有列信息显示出来。在使用聚合函数后,如果要显示其它的列必须将列加入到group by中,而使用开窗函数后,可以不使用group by。

代码如下:

case class StudentScore(name:String,clazz:Int,score:Int)
object SparkSqlOverDemo {def main(args: Array[String]): Unit = {val conf = new SparkConf().setMaster("local[*]").setAppName("sparksqlover")val sc = new SparkContext(conf)val spark = SparkSession.builder().config(conf).getOrCreate()val arr01 = Array(("a",1,88),("b",1,78),("c",1,95),("d",2,74),("e",2,92),("f",3,99),("g",3,99),("h",3,45),("i",3,53),("j",3,78))import spark.implicits._val scoreRDD = sc.makeRDD(arr01).map(x=>StudentScore(x._1,x._2,x._3)).toDSscoreRDD.createOrReplaceTempView("t_score")//查询t_score表数据spark.sql("select * from t_score").show()//使用开窗函数查找topN,rank() 跳跃排序,有两个第二名是,后边跟着的是第四名spark.sql("select name,clazz,score, rank() over( partition by clazz order by score desc ) rownum from t_score ").show()//讲使用开窗函数后的查询结果作为一张临时表,这个临时表有每个班的成绩排名,再取前三名spark.sql("select * from (select name,clazz,score, rank() over( partition by clazz order by score desc ) rownum from t_score) t1 where rownum <=3 ").show()}
}

相关文章:

SparkSQL与Hive整合 、SparkSQL函数操作

SparkSQL与Hive整合 SparkSQL和Hive的整合&#xff0c;是一种比较常见的关联处理方式&#xff0c;SparkSQL加载Hive中的数据进行业务处理&#xff0c;同时将计算结果落地回Hive中。 整合需要注意的地方 1)需要引入hive的hive-site.xml&#xff0c;添加classpath目录下面即可…...

K8s: Helm搭建mysql集群(2)

搭建 mysql 集群 应用中心&#xff0c;mysql 文档参考https://artifacthub.io/packages/helm/bitnami/mysql 1 &#xff09;helm 搭建 mysql A. 无存储&#xff0c;重启数据丢失 添加源 $ helm repo add mysql-repo https://charts.bitnami.com/bitnami安装 $ helm install…...

matlab期末知识

1.期末考什么&#xff1f; 1.1 matlab操作界面 &#xff08;1&#xff09;matlab主界面 &#xff08;2&#xff09;命令行窗口 &#xff08;3&#xff09;当前文件夹窗口 &#xff08;4&#xff09;工作区窗口 &#xff08;5&#xff09;命令历史记录窗口 1.2 matlab搜索…...

多台服务器共享python虚拟环境和Linux安装python虚拟环境

文章目录 一、新增服务器环境搭建1. python3 环境搭建2.必要软件安装3. 目录挂载1 ./toolchain 挂载&#xff1a;2. /virtualenvs挂载&#xff1a; 4. 安装驱动和sdk 二、多台服务器共享python虚拟环境 一、新增服务器环境搭建 1. python3 环境搭建 16.04 系统默认 python3.5&…...

在Python中安装和使用pandas库

在Python中安装和使用pandas库是一个相对简单的过程。以下是具体的步骤&#xff1a; 安装pandas库 你可以使用Python的包管理器pip来安装pandas。打开你的命令行工具&#xff08;在Windows上可能是CMD或PowerShell&#xff0c;在macOS或Linux上可能是Terminal&#xff09;&am…...

零基础学习数据库SQL语句之查询表中数据的DQL语句

是用来查询数据库表的记录的语句 在SQL语句中占有90%以上 也是最为复杂的操作 最为繁琐的操作 DQL语句很重要很重要 初始化数据库和表 USE dduo;create table tb_emp(id int unsigned primary key auto_increment comment ID,username varchar(20) not null unique comment…...

C++语法|bind1st和bind2nd的用法

文章目录 What什么是&#xff1f;How什么时候用&#xff1f;如何用&#xff1f;bind1st和bind2nd的底层实现原理my_find_if分析myBind1st分析 What什么是&#xff1f; bind1st 和bind2nd分别是一个用来绑定函数对象的第一个参数或第二个参数的适配器。它在 C98 和 C03 标准中很…...

Zabbix+Grafana-常见报错及异常处理方式记录

文章目录 Zabbix安装篇Zabbix Web页面连接数据库失败 Zabbix使用篇中文显示不全 Zabbix报警篇新建的用户&#xff0c;配置报警后&#xff0c;无法收到报警 Grafana安装篇Windows系统安装时&#xff0c;添加zabbix报错&#xff1a;An error occurred within the plugin Zabbix安…...

一键转换,MP4视频变为MP3音频,只需这一行代码!

想要将珍藏的视频配乐提取出来&#xff1f;想把喜欢的电影原声变成音频&#xff1f;现在&#xff0c;只需一行代码&#xff0c;就能轻松将MP4视频转换为MP3音频&#xff01; 这篇文章将带你一步步完成转换&#xff0c;并详细解释每一步的操作&#xff0c;即使你是新手也能轻松…...

Oracle12之后json解析包怎么调用

在 Oracle 12g 及之后的版本中&#xff0c;Oracle 提供了对 JSON 的原生支持&#xff0c;使得在数据库中存储、查询和解析 JSON 数据变得更为简单。你可以使用 Oracle 提供的 SQL 函数和操作符来处理 JSON 数据。 以下是一些常用的 Oracle SQL 函数和操作符&#xff0c;用于解…...

wordpress子比主题美化-为图文列表封面添加动态缩略图特效 多种效果演示

wordpress子比主题-为图文列表文章封面添加动态缩略图特效 给自己子比主题加一个列表文章封面添加动态缩略图 直接复制以下代码&#xff0c;添加到主题自定义CSS代码中即可&#xff0c;下图为效果演示 wordpress子比主题-为图文列表文章封面添加动态缩略图特效 给自己子比主题…...

spring boot3多模块项目工程搭建-上(团队开发模板)

⛰️个人主页: 蒾酒 &#x1f525;系列专栏&#xff1a;《spring boot实战》 目录 写在前面 多模块结构优缺点 模块介绍 Common 模块&#xff1a; API 模块&#xff1a; Web 模块&#xff1a; Service 模块&#xff1a; DAO 模块&#xff1a; 搭建步骤 1.创建 父…...

人脸美型SDK解决方案,适用于各类应用场景

视频内容已经成为企业宣传、产品展示、互动直播等多个领域的核心载体。而在这些场景中&#xff0c;高质量的人脸美型效果不仅能够提升用户体验&#xff0c;更能为品牌加分。美摄科技凭借深厚的技术积累和行业洞察&#xff0c;推出了全新的人脸美型SDK解决方案&#xff0c;为企业…...

RS2103XH 功能和参数介绍及规格书

RS2103XH 是一款单刀双掷&#xff08;SPDT&#xff09;模拟开关芯片&#xff0c;主要用于各种模拟信号的切换和控制。下面是一些其主要的功能和参数介绍&#xff1a; 主要功能特点&#xff1a; 模拟信号切换&#xff1a;能够连接和断开模拟信号路径&#xff0c;提供灵活的信号路…...

nn.TransformerEncoderLayer详细解释,使用方法!!

nn.TransformerEncoderLayer nn.TransformerEncoderLayer 是 PyTorch 的 torch.nn 模块中提供的一个类&#xff0c;用于实现 Transformer 编码器的一个单独的层。Transformer 编码器层通常包括一个自注意力机制和一个前馈神经网络&#xff0c;中间可能还包含层归一化&#xff…...

巨控GRM561/562/563/564Q杀菌信息远程监控

摘要 通过程序编写、手机APP画面制作等运行系统&#xff0c;实现电脑及手机APP显示的历史曲线画面和数据图形化的实时性。 不仅流程效率提升90%以上&#xff0c;同时为杀菌生产提供有利的质量保障&#xff0c;还有效规避因触屏及内存卡的突发异常导致历史数据的丢失&#xff0…...

RT-DETR-20240507周更说明|更新Inner-IoU、Focal-IoU、Focaler-IoU等数十种IoU计算方式

RT-DETR改进专栏|包含主干、模块、注意力、损失函数等改进 专栏介绍 本专栏包含模块、卷积、检测头、损失等深度学习前沿改进,目前已有改进点70&#xff01;每周更新。 20240507更新说明&#xff1a; ⭐⭐ 更新CIoU、DIoU、MDPIoU、GIoU、EIoU、SIoU、ShapeIou、PowerfulIoU、…...

Web3:下一代互联网的科技进化

随着科技的不断演进&#xff0c;互联网已经成为了我们生活中不可或缺的一部分。而在Web3时代&#xff0c;我们将会见证互联网进化的下一个阶段。本文将探讨Web3作为下一代互联网的科技进化&#xff0c;以及它所带来的重要变革和影响。 传统互联网的局限性 传统互联网存在诸多…...

SQL注入-基础知识

目录 前言 一&#xff0c;SQL注入是什么 二&#xff0c;SQL注入产生的条件 三&#xff0c;学习环境介绍 四、SQL注入原理 五&#xff0c;SQL中常用的函数 六&#xff0c;关于Mysql数据库 前言 在网络安全领域中&#xff0c;sql注入是一个无法被忽视的关键点&#xff0c…...

npx 有什么作用跟意义?为什么要有 npx?什么场景使用?

npx 是 npm 从 v5.2.0 开始新增了 npx 命令&#xff0c;> 该版本会自动安装 npx&#xff0c;如果不能使用就手动安装一下&#xff1a; $ npm install -g npxnpx 的作用 npm 只能管理包的依赖&#xff0c;npx 则可以快捷的运用包中的命令行工具和其他可执行文件&#xff0c…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...