当前位置: 首页 > news >正文

2024数学-微积分和线性代数/本科研究生专业考试/考研/论文/重点公式考点汇总/最难公式投票

## 整体公式汇总列表

http://www.deepnlp.org/equation/category/math

#### 微积分

## 几何级数
http://www.deepnlp.org/equation/arithmetic-and-geometric-progressions

## 级数收敛
http://www.deepnlp.org/equation/convergence-of-series

## 二项式展开 
http://www.deepnlp.org/equation/binomial-expansion

## 泰勒展开
http://www.deepnlp.org/equation/taylor-series

## 高斯过程
http://www.deepnlp.org/equation/gaussian-process

# 傅里叶级数
http://www.deepnlp.org/equation/fourier-series

# maclaurin级数
http://www.deepnlp.org/equation/maclaurin-series

# 复数级数
http://www.deepnlp.org/equation/power-series-for-complex-variables


# 拉普拉斯方程
http://www.deepnlp.org/equation/laplace-equation


# 拉普拉斯变换
http://www.deepnlp.org/equation/laplace-transform


##### 代数Algebra

# 行列式 Determinants
http://www.deepnlp.org/equation/determinants-of-a-matrix

# 特征值和特征向量
http://www.deepnlp.org/equation/eigenvalues-and-eigenvectors

# 二项式回归
http://www.deepnlp.org/equation/regression-least-squares-fitting


# 傅里叶变换
http://www.deepnlp.org/equation/fourier-transforms

相关文章:

2024数学-微积分和线性代数/本科研究生专业考试/考研/论文/重点公式考点汇总/最难公式投票

## 整体公式汇总列表 http://www.deepnlp.org/equation/category/math #### 微积分 ## 几何级数http://www.deepnlp.org/equation/arithmetic-and-geometric-progressions ## 级数收敛http://www.deepnlp.org/equation/convergence-of-series ## 二项式展开 http://www.dee…...

代码随想录训练营Day33(贪心算法):Leetcode1005、134、135(难得有一天能完全独立做出题目)

Leetcode1005: 题目描述: 给你一个整数数组 nums 和一个整数 k ,按以下方法修改该数组: 选择某个下标 i 并将 nums[i] 替换为 -nums[i] 。 重复这个过程恰好 k 次。可以多次选择同一个下标 i 。 以这种方式修改数组后,返回数…...

Flutter笔记:Widgets Easier组件库(12)使用消息吐丝(Notify Toasts)

Flutter笔记 Widgets Easier组件库(12)使用消息吐丝(Notify Toasts) - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 29114848416…...

从《春色寄情人》学习如何面对死亡

经典台词,很震撼又很实用,记录一下。 ❤️01 有的时候好人不长命百岁,是因为老天爷觉得他们太累,让他们提前休息了! ❤️02 跟我们亲近的人离世,有可能是老天给我们发的信号,提醒我们&#xff…...

使用moveit控制机械臂

在这篇博客中,我们将详细探讨如何利用Python和Robot Operating System(ROS)配合MoveIt! 控制机械臂执行精确的抓取任务。机械臂技术在工业自动化、医疗服务以及研究领域扮演着越来越关键的角色。本文将通过介绍安装必要的软件、编写控制脚本以…...

Mysql报错红温集锦(一)(ipynb配置、pymysql登录、密码带@、to_sql如何加速、触发器SIGNAL阻止插入数据)

一、jupyter notebook无法使用%sql来添加sql代码 可能原因: 1、没装jupyter和notebook库、没装ipython-sql库 pip install jupyter notebook ipython-sql 另外如果是vscode的话还需要安装一些相关的插件 2、没load_ext %load_ext sql 3、没正确的登录到mysql…...

ASP.NET Core SignalR 配置与集成测试究极指南

这篇文章也可以在我的博客中查看 前言 哥们最近都在埋头苦干,沉默是金,有一段时间没更新博客了。然而今儿SignalR集成测试实属是给我整破防了。虽说SignalR是.NET官方维护的实时通信库,已经开发了有十几年,甚至已经编入至了core…...

JENKINS 安装,学习运维从这里开始

Download and deployJenkins – an open source automation server which enables developers around the world to reliably build, test, and deploy their softwarehttps://www.jenkins.io/download/首先点击上面。下载Jenkins 为了学习,从windows开始&#x…...

大语言模型从Scaling Laws到MoE

1、摩尔定律和伸缩法则 摩尔定律(Moores law)是由英特尔(Intel)创始人之一戈登摩尔提出的。其内容为:集成电路上可容纳的晶体管数目,约每隔两年便会增加一倍;而经常被引用的“18个月”&#xf…...

四级英语翻译随堂笔记

降维表达:中译英,英译英 没有强调主语,没有说明主语:用被动 但如果实在不行,再增添主语 不会就不翻译,不要乱翻译 以xxx为背景:against the backdrop of the xxx eg:against the backdrop of…...

Nacos支持的配置格式及其在微服务架构中的应用

今天,我想和大家探讨一下Nacos这一重要的微服务组件,特别是它所支持的配置格式以及这些格式在微服务架构中的应用。 一、Nacos简介 Nacos是阿里巴巴开源的一个更易于构建云原生应用的动态服务发现、配置管理和服务管理平台。它提供了服务发现、配置管理…...

2024年华为OD机试真题-小明找位置-(C++)-OD统一考试(C卷D卷)

题目描述: 小朋友出操,按学号从小到大排成一列;小明来迟了,请你给小明出个主意,让他尽快找到他应该排的位置。 算法复杂度要求不高于nLog(n);学号为整数类型,队列规模<=10000; 输入描述: 1、第一行:输入已排成队列的小朋友的学号(正整数),以”,”隔开; …...

机器人系统ros2内部接口介绍

内部 ROS 接口是公共 C API &#xff0c;供创建客户端库或添加新的底层中间件的开发人员使用&#xff0c;但不适合典型 ROS 用户使用。 ROS客户端库提供大多数 ROS 用户熟悉的面向用户的API&#xff0c;并且可能采用多种编程语言。 内部API架构概述 内部接口主要有两个&#x…...

跟随Facebook的足迹:社交媒体背后的探索之旅

在当今数字化时代&#xff0c;社交媒体已经成为了人们日常生活中不可或缺的一部分。而在这庞大的社交媒体网络中&#xff0c;Facebook作为其中的巨头&#xff0c;一直在引领着潮流。从创立之初的一个大学社交网络到如今的全球性平台&#xff0c;Facebook的发展历程承载了无数故…...

面试题分享之Java并发篇

注意&#xff1a;文章若有错误的地方&#xff0c;欢迎评论区里面指正 &#x1f36d; 系列文章目录 面试题分享之Java集合篇&#xff08;三&#xff09; 面试题分享之Java集合篇&#xff08;二&#xff09; 面试题分享之Java基础篇&#xff08;三&#xff09; 前言 今天给小…...

bpmn-js 多实例配置MultiInstanceLoopCharacteristics实现或签会签

使用bpmn-js流程图开发过程中会遇到会签和或签的问题,这个时候我们就需要使用多实例配置来实现BPMN 2.0的配置实现了,多实例任务,是从流程编辑概念之初也就是Activiti时期就存在的一个方式。所谓的多实例任务也就是字面意思,一个任务由多个人完成,常见于我们的审批流程的或…...

【gpedit.msc】组策略编辑器的安装,针对windows家庭版,没有此功能

创建一个记事本文件然后放入以下内容 echo offpushd "%~dp0"dir /b %systemroot%\Windows\servicing\Packages\Microsoft-Windows-GroupPolicy-ClientExtensions-Package~3*.mum >gp.txtdir /b %systemroot%\servicing\Packages\Microsoft-Windows-GroupPolicy-…...

带EXCEL附件邮件发送相关代码

1.查看生成的邮件 2.1 非面向对象的方式&#xff08;demo直接copy即可&#xff09; ​ REPORT Z12. DATA: IT_DOCUMENT_DATA TYPE SODOCCHGI1,IT_CONTENT_TEXT TYPE STANDARD TABLE OF SOLISTI1 WITH HEADER LINE,IT_PACKING_LIST TYPE TABLE OF SOPCKLSTI1 WITH HEADER LIN…...

【算法作业】均分卡牌,购买股票

问题描述 John 有两个孩子&#xff0c;在 John病逝后&#xff0c;留下了一组价值不一定相同的魔卡&#xff0c; 现在要求你设计一种策略&#xff0c;帮John的经管人将John的这些遗产分给他的两个孩子&#xff0c;使得他们获得的遗产差异最小&#xff08;每张魔卡不能分拆&#…...

python作业

题目 分析 步骤&#xff1a; 判断先画空格还是数字 当有n层时&#xff0c;第i层有多少个空格第i层的起始数字是几&#xff0c;结尾是几&#xff0c;即数字取值范围当有n层时&#xff0c;第i层有多少个数字 代码 模式A n int(input("请输入行数:")) for i in range(…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件&#xff0c;我的文件路径是/etc/mysql/my.cnf&#xff0c;有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...