当前位置: 首页 > news >正文

深入了解 NumPy:深度学习中的数学运算利器

文章目录

      • 1. 导入NumPy
      • 2. 创建NumPy数组
      • 3. 数组的算术运算
      • 4. N维数组
        • 4.1 创建和操作多维数组
        • 4.2 高维数组
      • 5. NumPy的广播功能
        • 5.1 基本广播示例
        • 5.2 更复杂的广播示例
      • 6. 访问数组元素
        • 6.1 基于索引的访问
        • 6.2 遍历数组
        • 6.3 基于条件的访问
        • 6.4 高级索引
        • 6.5 性能考虑

在深度学习和数据科学的领域,数学运算尤为重要,而NumPy库则是Python中处理这些计算的核心工具。NumPy(Numerical Python的缩写)提供了一个强大的数组对象:numpy.ndarray,它是多维数组的核心,并带有大量的便捷方法,使得数学运算变得简洁而高效。

1. 导入NumPy

NumPy并不是Python标准库的一部分,需要单独安装和导入。在Python中,通过简单的导入声明可以轻松访问NumPy库:

import numpy as np

通过np这个别名来使用NumPy的各种功能,提高代码的可读性和易用性。

2. 创建NumPy数组

NumPy的核心功能之一是其数组处理能力。通过np.array()函数,可以将Python的列表转换成numpy.ndarray对象(即NumPy数组):

x = np.array([1.0, 2.0, 3.0])
print(x)
# 输出: [1. 2. 3.]

3. 数组的算术运算

NumPy数组支持元素级的算术运算,这意味着运算会应用到数组中的每一个元素上。

x = np.array([1.0, 2.0, 3.0])
y = np.array([2.0, 4.0, 6.0])

在NumPy中,进行基本运算如加法、减法、乘法和除法时,这些操作是按元素进行的:

print(x + y)  # 对应元素相加:[3. 6. 9.]
print(x - y)  # 对应元素相减:[-1. -2. -3.]
print(x * y)  # 对应元素相乘:[2. 8. 18.]
print(x / y)  # 对应元素相除:[0.5 0.5 0.5]

重要的是,进行这些操作的两个数组必须具有相同的形状或兼容的形状。如果形状不匹配,NumPy会尝试广播数组以匹配形状,如果无法广播,则会抛出一个错误(广播在后面有解释)

此外,NumPy也支持数组与标量之间的运算,这表现在所谓的广播(broadcast)特性上,允许小规模数据结构与大规模数据结构间进行算术运算:

print(x / 2.0)  # 每个元素除以2:[0.5 1.0 1.5]

4. N维数组

NumPy提供了强大的多维数组支持,这使其在科学计算中发挥了至关重要的作用。它能够处理从一维数组(向量)、二维数组(矩阵)到更高维度的数组(张量),用于表示各种复杂的数据结构。

4.1 创建和操作多维数组

以二维数组为例,可以轻松地创建和进行算术运算:

import numpy as np# 创建一个2x2的二维数组
A = np.array([[1, 2], [3, 4]])
print(A)
# 输出:
# [[1 2]
#  [3 4]]# 查看数组的形状和数据类型
print("Shape:", A.shape)  # Shape: (2, 2)
print("Data type:", A.dtype)  # Data type: int64# 创建另一个2x2的二维数组
B = np.array([[3, 0], [0, 6]])# 数组的加法和元素级乘法
print("A + B =", A + B)
# 输出:
# A + B = [[ 4  2]
#          [ 3 10]]
print("A * B =", A * B)
# 输出:
# A * B = [[ 3  0]
#          [ 0 24]]

在NumPy中,数组的算术运算是元素级的,意味着操作会在两个数组的相应元素间进行。此外,NumPy的广播功能允许执行如标量与数组之间的运算,这在实际应用中非常有用:

# 标量与数组的乘法
print("A * 10 =", A * 10)
# 输出:
# A * 10 = [[10 20]
#           [30 40]]
4.2 高维数组

NumPy的能力不限于一维或二维数组。它可以创建和操作任何高度的多维数组。例如,三维或更高维度的数组通常用于数据科学和机器学习中,处理如图像数据(宽度、高度、颜色通道)或时间序列数据(数据点、时间步长、特征数量):

# 创建一个3维数组
Z = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],[[10, 11, 12], [13, 14, 15], [16, 17, 18]],[[19, 20, 21], [22, 23, 24], [25, 26, 27]]])print(Z)
# 可以访问特定的层、行、列
print("Access a specific element:", Z[1, 2, 0])  # 访问第二层,第三行,第一个元素(16)

5. NumPy的广播功能

NumPy的广播功能是其数组操作中一个非常强大的特性,允许在执行算术运算时自动扩展一个较小的数组以匹配一个较大数组的形状,无需显式复制数据。

5.1 基本广播示例

当使用标量与数组进行运算时,标量会被广播到数组的每个元素上:

import numpy as npA = np.array([[1, 2], [3, 4]])
# 标量与二维数组的乘法
result = A * 10
print(result)
# 输出:
# [[10 20]
#  [30 40]]

在这里插入图片描述

在这个例子中,标量10被广播成与数组A相同的形状,然后与数组中的每个元素相乘。

5.2 更复杂的广播示例

广播功能也适用于维度不一致但兼容的数组之间。例如,当一维数组与二维数组相乘时,一维数组会沿着缺少的维度被扩展,以匹配较大的数组:

B = np.array([10, 20])
# 一维数组与二维数组的元素级乘法
result = A * B
print(result)
# 输出:
# [[10 40]
#  [30 80]]

在这里插入图片描述

一维数组B的每个元素被广播到了A的对应行上,使得乘法能够按元素执行。

6. 访问数组元素

NumPy数组提供了多种灵活的元素访问方法,这包括基于索引的访问以及基于条件的访问,极大地简化了数据操作和处理。

6.1 基于索引的访问

在NumPy数组中,每个元素的位置由从零开始的索引确定。可以通过指定位置的索引来访问单个数组元素,或者通过切片来访问数组的一个区段:

import numpy as npX = np.array([[51, 55], [14, 19], [0, 4]])
print("第0行:", X[0])  # 访问第一行
# 输出: [51 55]
print("位置(0,1)的元素:", X[0][1])  # 访问第一行的第二个元素
# 输出: 55
6.2 遍历数组

NumPy数组也支持使用循环来遍历元素,例如使用for循环遍历每一行:

for row in X:print(row)
# 输出:
# [51 55]
# [14 19]
# [0 4]
6.3 基于条件的访问

NumPy支持使用条件表达式来选择数组中满足特定条件的元素。这种方法返回一个布尔数组,可以用于索引原数组:

# 找出所有大于15的元素
filtered = X[X > 15]
print("大于15的元素:", filtered)
# 输出: [51 55 19]
6.4 高级索引

NumPy允许使用数组索引来访问数据,这对于从数组中选择一个非连续的元素子集特别有用:

X_flat = X.flatten()  # 将X转换为一维数组
print("转换后的一维数组:", X_flat)
# 输出: [51 55 14 19 0 4]indices = np.array([0, 2, 4])
selected_elements = X_flat[indices]  # 通过索引数组访问元素
print("选定索引的元素:", selected_elements)
# 输出: [51 14 0]
6.5 性能考虑

尽管Python是一种动态类型的语言,其运算速度通常不如C和C++这样的静态类型语言,但是NumPy的大部分数值计算都是用C或C++实现的。这意味着NumPy能够提供接近于编译型语言的性能,同时保持Python语言的灵活性和易用性。因此,使用NumPy可以在不牺牲性能的前提下,利用Python便捷的语法进行高效的数学和逻辑运算。

相关文章:

深入了解 NumPy:深度学习中的数学运算利器

文章目录 1. 导入NumPy2. 创建NumPy数组3. 数组的算术运算4. N维数组4.1 创建和操作多维数组4.2 高维数组 5. NumPy的广播功能5.1 基本广播示例5.2 更复杂的广播示例 6. 访问数组元素6.1 基于索引的访问6.2 遍历数组6.3 基于条件的访问6.4 高级索引6.5 性能考虑 在深度学习和数…...

鸿蒙开发接口Ability框架:【@ohos.ability.particleAbility (particleAbility模块)】

particleAbility模块 particleAbility模块提供了Service类型Ability的能力,包括启动、停止指定的particleAbility,获取dataAbilityHelper,连接、断开当前Ability与指定ServiceAbility等。 说明: 本模块首批接口从API version 7开…...

Flutter笔记:Widgets Easier组件库(8)使用图片

Flutter笔记 Widgets Easier组件库(8):使用图片 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress o…...

商务分析方法与工具(五):Python的趣味快捷-文件和文件夹操作自动化

Tips:"分享是快乐的源泉💧,在我的博客里,不仅有知识的海洋🌊,还有满满的正能量加持💪,快来和我一起分享这份快乐吧😊! 喜欢我的博客的话,记得…...

codeforce#938 (div3) 题解

C. Inhabitant of the Deep Sea 数组第一个元素减一下&#xff0c;最后一个元素减一下&#xff0c;一共能减k次&#xff0c;问有多少元素能减到0.细节模拟我是傻逼&#xff0c;有问题建议直接看tc面像tc编程 #include <iostream> #include <string.h> #include &…...

【Docker】如何注册Hub账号并上传镜像到Hub仓库

一、创建Hub账户 浏览器访问&#xff1a;hub.docker.com 点击【Sign up】注册账号 输入【邮箱】【用户名】【密码】 ps&#xff1a;用户名要有字母数字&#xff1b;订阅不用勾选 点击【Sign up】注册即可 点击【Sign in】登录账号 输入【邮箱】【密码】 点击【Continue】登录 二…...

[初阶数据结构】单链表

前言 &#x1f4da;作者简介&#xff1a;爱编程的小马&#xff0c;正在学习C/C&#xff0c;Linux及MySQL。 &#x1f4da;本文收录于初阶数据结构系列&#xff0c;本专栏主要是针对时间、空间复杂度&#xff0c;顺序表和链表、栈和队列、二叉树以及各类排序算法&#xff0c;持…...

项目使用git开发流程

第一步 项目初期&#xff1a;领导负责的工作 01 创建仓库&#xff1a;在码云上面创建仓库地址&#xff0c;创建完成后点击初始化README&#xff1a;郝陶涛/vue-tea 02 领导在桌面上将代码克隆下来&#xff1a;将代码克隆下来之后&#xff0c;切换到代码内部&#xff0c;使用g…...

Day 28 MySQL的数据备份与恢复

数据备份及恢复 1.概述 ​ 所有备份数据都应放在非数据库本地&#xff0c;而且建议有多份副本 备份&#xff1a; 能够防止由于机械故障以及人为误操作带来的数据丢失&#xff0c;例如将数据库文件保存在了其它地方 冗余&#xff1a; 数据有多份冗余&#xff0c;但不等备份&…...

PackageKit的使用(三)疑问篇

本篇主要是一些疑问归纳&#xff0c;不做具体的函数分析&#xff0c;但是会给出关键点&#xff0c;查看源码就会很清楚了 apt source PackageKit 1. org.freedesktop.PackageKit D-Bus 接口介绍 D-Bus API Reference: PackageKit Reference Manual c库的接口可以看源码。 2.…...

【Linux】17. 进程间通信 --- 管道

1. 什么是进程间通信(进程间通信的目的) 数据传输&#xff1a;一个进程需要将它的数据发送给另一个进程 资源共享&#xff1a;多个进程之间共享同样的资源。 通知事件&#xff1a;一个进程需要向另一个或一组进程发送消息&#xff0c;通知它&#xff08;它们&#xff09;发生了…...

有哪些有效的复习方法可以帮助备考软考?

软考目前仍然是一个以记忆为主、理解为辅的考试。学过软考的朋友可能会感到困惑&#xff0c;因为软考的知识在日常工作中有许多应用场景&#xff0c;需要理解的地方也很多。但为什么我说它是理解为辅呢&#xff1f;因为这些知识点只要记住了&#xff0c;都不难理解&#xff0c;…...

【MySQL | 第九篇】重新认识MySQL锁

文章目录 9.重新认识MySQL锁9.1MySQL锁概述9.2锁分类9.2.1锁的粒度9.2.2锁的区间9.2.3锁的性能9.2.4锁的级别 9.3拓展&#xff1a;意向锁9.3.1意向锁概述9.3.2意向锁分类9.3.3意向锁作用&#xff08;1&#xff09;意向锁的兼容互斥性&#xff08;2&#xff09;例子1&#xff08…...

含义:理财风险等级R1、R2、R3、R4、R5

理财风险等级R1、R2、R3代表什么&#xff0c;为什么R1不保本&#xff0c;R2可能亏损 不尔聊投资https://author.baidu.com/home?frombjh_article&app_id1704141696580953 我们购买理财产品的时候&#xff0c;首先都会看到相关产品的风险等级。风险等级约定俗成有5级&…...

ICode国际青少年编程竞赛- Python-2级训练场-列表入门

ICode国际青少年编程竞赛- Python-2级训练场-列表入门 1、 Dev.step(3)2、 Flyer.step(1) Dev.step(-2)3、 Flyer.step(1) Spaceship.step(7)4、 Flyer.step(5) Dev.turnRight() Dev.step(5) Dev.turnLeft() Dev.step(3) Dev.turnLeft() Dev.step(7) Dev.turnLeft() Dev.…...

【设计模式】14、strategy 策略模式

文章目录 十四、strategy 策略模式14.1 map_app14.1.1 map_app_test.go14.1.2 map_app.go14.1.3 navigate_strategy.go 十四、strategy 策略模式 https://refactoringguru.cn/design-patterns/strategy 需求: client 知道很多不同的策略, 希望在运行时切换. 场景示例: 就像高…...

C++类和对象(基础篇)

前言&#xff1a; 其实任何东西&#xff0c;只要你想学&#xff0c;没人能挡得住你&#xff0c;而且其实学的也很快。那么本篇开始学习类和对象&#xff08;C的&#xff0c;由于作者有Java基础&#xff0c;可能有些东西过得很快&#xff09;。 struct在C中的含义&#xff1a; …...

Oracle导入数据中文乱码问题处理,修改客户端字符编码跟数据库的一致

前提&#xff1a;SQL文件打开其中中文字符是正常显示&#xff0c;保证导出文件中文字符正常。通过sqlplus命令导入SQL文件出现乱码&#xff0c;这是因为客户端跟数据库的字符集不一致导致出现乱码问题。 要SQL导入的中文正常&#xff0c;要确保执行导入命令的客户端字符编码跟…...

【与 Apollo 共创生态:展望自动驾驶全新未来】

1、引言 历经七年的不懈追求与创新&#xff0c;Apollo开放平台已陆续推出了13个版本&#xff0c;汇聚了来自全球170多个国家与地区的16万名开发者及220多家合作伙伴。随着Apollo开放平台的不断创新与发展&#xff0c;Apollo在2024年4月19日迎来了Apollo开放平台的七周年大会&a…...

【webrtc】MessageHandler 5: 基于线程的消息处理:以PeerConnection信令线程为例

peerconn的信令是通过post 消息到自己的信令线程消息来处理的PeerConnectionMessageHandler 是具体的处理器G:\CDN\rtcCli\m98\src\pc\peer_connection_message_handler.hMachinery for handling messages posted to oneself PeerConnectionMessageHandler 明确服务于 signalin…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号&#xff0c;此时&#xff0c;我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者&#xff1a;来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布&#xff0c;Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明&#xff0c;Elastic 作为 …...

【记录坑点问题】IDEA运行:maven-resources-production:XX: OOM: Java heap space

问题&#xff1a;IDEA出现maven-resources-production:operation-service: java.lang.OutOfMemoryError: Java heap space 解决方案&#xff1a;将编译的堆内存增加一点 位置&#xff1a;设置setting-》构建菜单build-》编译器Complier...