如何在Python中实现文本相似度比较?
在Python中实现文本相似度比较可以通过多种方法,每种方法都有其适用场景和优缺点。以下是一些常见的文本相似度比较方法:
1. 余弦相似度(Cosine Similarity)
余弦相似度是通过计算两个向量之间夹角的余弦值来确定它们之间的相似度。在文本处理中,可以使用TF-IDF(Term Frequency-Inverse Document Frequency)将文本转换为向量。
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity# 示例文本
text1 = "The quick brown fox jumps over the lazy dog"
text2 = "A fast brown fox leaped over the dog"# 使用TF-IDF向量化文本
vectorizer = TfidfVectorizer().fit_transform([text1, text2])# 计算余弦相似度
cosine_sim = cosine_similarity(vectorizer[0:1], vectorizer[1:2])[0][0]
print(f"Cosine Similarity: {cosine_sim}")
2. Jaccard 相似度
Jaccard 相似度是衡量两个集合相似度的一种方法,通过计算两个集合交集的大小与并集的大小之比得到。
def jaccard_similarity(text1, text2):set1 = set(text1.split())set2 = set(text2.split())intersection = set1.intersection(set2)union = set1.union(set2)return len(intersection) / len(union)text1 = "The quick brown fox jumps over the lazy dog"
text2 = "A fast brown fox leaped over the dog"similarity = jaccard_similarity(text1, text2)
print(f"Jaccard Similarity: {similarity}")
3. Levenshtein 距离(编辑距离)
Levenshtein 距离是两个序列之间的距离,定义为将一个序列转换为另一个序列所需的最少单字符编辑(插入、删除或替换)次数。
from Levenshtein import distancetext1 = "example text one"
text2 = "sample text one"distance = distance(text1, text2)
similarity = 1 - distance / max(len(text1), len(text2))
print(f"Levenshtein Similarity: {similarity}")
4. Ratcliff/Obershelp 算法
这是一种字符串比较算法,用于计算两个字符串之间的相似度。
from ratcliff_obershelp import similaritytext1 = "example text one"
text2 = "sample text one"similarity_score = similarity(text1, text2)
print(f"Ratcliff/Obershelp Similarity: {similarity_score}")
5. Word2Vec 和 Doc2Vec
这些是基于深度学习的文本相似度比较方法,它们使用预训练的词嵌入(如Word2Vec)或文档嵌入(如Doc2Vec)来将文本转换为向量,然后使用余弦相似度等度量来比较这些向量。
from gensim.models import Word2Vec# 假设word2vec_model是一个预训练的Word2Vec模型
text1 = "The quick brown fox jumps over the lazy dog"
text2 = "A fast brown fox leaped over the dog"# 使用Word2Vec模型将文本转换为向量
vector1 = word2vec_model.wmdistance(text1.split(), text2.split())
print(f"Word2Vec Similarity: {vector1}")
6. BERT 和其他 Transformer 模型
最新的自然语言处理模型,如BERT,可以用于计算文本之间的相似度。这些模型能够捕捉到文本的深层语义信息。
from transformers import BertModel, BertTokenizer# 初始化BERT的分词器和模型
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')# 将文本转换为BERT的输入格式
text1 = "The quick brown fox jumps over the lazy dog"
text2 = "A fast brown fox leaped over the dog"encoded1 = tokenizer(text1, return_tensors='pt')
encoded2 = tokenizer(text2, return_tensors='pt')# 使用BERT模型获取向量表示
with torch.no_grad():output1 = model(**encoded1)output2 = model(**encoded2)# 计算余弦相似度
cosine_sim = cosine_similarity(output1.last_hidden_state[:, 0, :], output2.last_hidden_state[:, 0, :])[0][0]
print(f"BERT Similarity: {cosine_sim}")
注意事项
- 文本预处理:在进行相似度比较之前,通常需要对文本进行预处理,如分词、去除停用词、词干提取或词形还原等。
- 选择方法:根据具体应用场景和需求选择最合适的方法。例如,如果需要捕捉语义层面的相似度,可能需要使用深度学习方法。
这些方法各有优势,你可能需要根据你的具体需求和资源来选择最合适的一种或几种方法的组合。
相关文章:
如何在Python中实现文本相似度比较?
在Python中实现文本相似度比较可以通过多种方法,每种方法都有其适用场景和优缺点。以下是一些常见的文本相似度比较方法: 1. 余弦相似度(Cosine Similarity) 余弦相似度是通过计算两个向量之间夹角的余弦值来确定它们之间的相似…...

韩顺平0基础学Java——第7天
p110-p154 控制结构(第四章) 多分支 if-elseif-else import java.util.Scanner; public class day7{public static void main(String[] args) {Scanner myscanner new Scanner(System.in);System.out.println("input your score?");int s…...

性能远超GPT-4!谷歌发布Med-Gemini医疗模型;李飞飞首次创业瞄准空间智能;疫苗巨头联合OpenAl助力AI医疗...
AI for Science 企业动态速览—— * 谷歌 Med-Gemini 医疗 AI 模型性能远超 GPT-4 * 斯坦福李飞飞首次创业瞄准「空间智能」 * 疫苗巨头 Moderna 与 OpenAl 达成合作 * 美国能源部推动 AI 在清洁能源领域的应用 * 美年健康荣获「2024福布斯中国人工智能创新场景应用企业TOP10」…...

中国科技大航海时代,“掘金”一带一路
文|白 鸽 编|王一粟 “这不就是90年代的内地吗?” 在深度考察完沙特市场后,华盛集团联合创始人兼CEO张霆对镜相工作室感慨道。 在张霆看来,沙特落后的基建(意味着大量创新空间)、刚刚开放…...
ffmpeg7.0 flv支持hdr
ffmpeg7.0 flv支持hdr 自从ffmpeg6.0应用enhance rtmp支持h265/av1的flv格式后,7.0迎来了flv的hdr能力。本文介绍ffmpeg7.0如何支持hdr in flv。 如果对enhance rtmp如何支持h265不了解,推荐详解Enhanced-RTMP支持H.265 1. enhance rtmp关于hdr 文档…...

【教程】极简Python接入免费语音识别API
转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,请不吝给个[点赞、收藏、关注]哦~ 安装库: pip install SpeechRecognition 使用方法: import speech_recognition as srr sr.Recognizer() harvard sr…...

详解typora配置亚马逊云科技Amazon S3图床
欢迎免费试用亚马逊云科技产品:https://mic.anruicloud.com/url/1333 当前有很多不同的博客社区,不同的博客社区使用的编辑器也不尽相同,大概可以分为两种,一种是markdown格式,另外一种是富文本格式。例如华为云开发者…...

Python sqlite3库 实现 数据库基础及应用 输入地点,可输出该地点的爱国主义教育基地名称和批次的查询结果。
目录 【第11次课】实验十数据库基础及应用1-查询 要求: 提示: 运行结果: 【第11次课】实验十数据库基础及应用1-查询 声明:著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 1.简答题 数据库文件Edu_Base.db&#…...
iOS-SSL固定证书
文章目录 1. SSL简介2. 证书锁定原理1.1 证书锁定1.2 公钥锁定1.3 客户端获取公钥1.4 客户端使用SSL锁定选择1.5 项目支持SSL证书锁定1.6 问题记录1. SSL简介 证书锁定(SSL/TLS Pinning)顾名思义,将服务器提供的SSL/TLS证书内置到移动端开发的APP客户端中,当客户端发起请求…...
docker 开启 tcp 端口
前言:查了很多网上资料 都说要修改daemons,json 完全不管用,而且还导致添加 {“host”:["tcp://0.0.0.0:2375","unix:///var/lib/docker.sock"]} 后,docker restart 失败,浪费了不少时间 !&am…...
zookeeper之分布式环境搭建
ZooKeeper的分布式环境搭建是一个涉及多个步骤的过程,主要包括准备工作、安装ZooKeeper、配置集群、启动服务以及验证集群状态。以下是搭建ZooKeeper分布式环境的基本步骤: 1. 准备工作 确保所有节点的系统时间同步。确保所有节点之间网络互通…...
java设计模式三
工厂模式是一种创建型设计模式,它提供了一个创建对象的接口,但允许子类决定实例化哪一个类。工厂模式有几种变体,包括简单工厂模式、工厂方法模式和抽象工厂模式。下面通过一个简化的案例和对Java标准库中使用工厂模式的源码分析来说明这一模…...

##12 深入了解正则化与超参数调优:提升神经网络性能的关键策略
文章目录 前言1. 正则化技术的重要性1.1 L1和L2正则化1.2 Dropout1.3 批量归一化 2. 超参数调优技术2.1 网格搜索2.2 随机搜索2.3 贝叶斯优化 3. 实践案例3.1 设置实验3.2 训练和测试 4. 结论 前言 在深度学习中,构建一个高性能的模型不仅需要一个好的架构…...

TODESK怎么查看有人在远程访问
odesk怎么查看有人在远程访问 Todesk作为一款远程桌面控制软件,为用户提供了便捷的远程访问与控制功能。但在享受这种便利的同时,许多用户也关心如何确保自己设备的安全,特别是如何知道是否有人在未经授权的情况下远程访问自己的电脑。本文将…...
【Web漏洞指南】服务器端 XSS(动态 PDF)
【Web漏洞指南】服务器端 XSS(动态 PDF) 概述流行的 PDF 生成工具常见攻击载荷 概述 如果一个网页使用用户控制的输入创建 PDF,您可以尝试欺骗创建 PDF 的机器人以执行任意的 JS 代码。 因此,如果PDF 创建机器人发现某种HTML标签…...
Qt中的对象树
一. QT对象树的概念 QObject 的构造函数中会传入一个 Parent 父对象指针,children() 函数返回 QObjectList。即每一个 QObject 对象有且仅有一个父对象,但可以有很多个子对象。 那么Qt这样设计的好处是什么呢?很简单,就是为了方…...

QT-day1
1、 自由发挥应用场景,实现登录界面。 要求:尽量每行代码都有注释。 #ifndef MYWIDGET_H #define MYWIDGET_H #include <QWidget> #include <QIcon>//窗口 #include <QLabel>//标签库 #include <QMovie>//动态图片库 #include…...

安装oh-my-zsh(命令行工具)
文章目录 一、安装zsh、git、wget二、安装运行脚本1、curl/wget下载2、手动下载 三、切换主题1、编辑配置文件2、切换主题 四、安装插件1、zsh-syntax-highlighting(高亮语法错误)2、zsh-autosuggestions(自动补全) 五、更多优化配…...

解决方案:‘Series‘ object has no attribute ‘xxxx‘
文章目录 一、现象二、解决方案 一、现象 ...... model.fit(X_train, y_train) y_pred model.predict(X_test) recall recall_score(y_test, y_pred) precision precision_score(y_test. y_pred) ......执行语句到**“precision precision_score(y_test. y_pred)”**这里发…...

智慧手术室手麻系统源码,C#手术麻醉临床信息系统源码,符合三级甲等医院评审要求
手麻系统全套源码,C#手术麻醉系统源码,支持二次开发,授权后可商用。 手术麻醉临床信息系统功能符合三级甲等医院评审要求,实现与医院现有信息系统如HIS、LIS、PACS、EMR等系统全面对接,全面覆盖从患者入院,…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...

C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...

elementUI点击浏览table所选行数据查看文档
项目场景: table按照要求特定的数据变成按钮可以点击 解决方案: <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...