当前位置: 首页 > news >正文

机器学习算法应用——CART决策树

CART决策树(4-2)

CART(Classification and Regression Trees)决策树是一种常用的机器学习算法,它既可以用于分类问题,也可以用于回归问题。CART决策树的主要原理是通过递归地将数据集划分为两个子集来构建决策树。在分类问题中,CART决策树通过选择一个能够最大化分裂后各个子集纯度提升的特征进行分裂,从而将数据划分为不同的类别。

CART决策树的构建过程包括以下几个步骤:

  1. 特征选择:从数据集中选择一个最优特征,用于划分数据集。最优特征的选择基于某种准则,如基尼指数(Gini Index)或信息增益(Information Gain)。
  2. 决策树生成:根据选定的最优特征,将数据集划分为两个子集,并递归地在每个子集上重复上述过程,直到满足停止条件(如子集大小小于某个阈值、所有样本属于同一类别等)。
  3. 剪枝:为了避免过拟合,可以对生成的决策树进行剪枝操作,即删除一些子树或叶子节点,以提高模型的泛化能力。

CART决策树的优点包括:

  1. 计算简单,易于理解,可解释性强。
  2. 不需要预处理,不需要提前归一化,可以处理缺失值和异常值。
  3. 既可以处理离散值也可以处理连续值。
  4. 既可以用于分类问题,也可以用于回归问题。

然而,CART决策树也存在一些缺点:

  1. 不支持在线学习,当有新样本产生时,需要重新构建决策树模型。
  2. 容易出现过拟合现象,生成的决策树可能对训练数据有很好的分类能力,但对未知的测试数据却未必有很好的分类能力。
  3. 对于一些复杂的关系,如异或关系,CART决策树可能难以学习。

CART决策树在许多领域都有广泛的应用,如推荐系统中的商品推荐模型、金融风控中的信用评分和欺诈检测、医疗诊断中的疾病预测等。此外,CART决策树还可以用于社交媒体情感分析等领域。

  1. 数据

使用Universal Bank数据集。

示例:

        

IDAgeExperienceIncomeZIP CodeFamilyCCAvgEducationMortgagePersonal LoanSecurities AccountCD AccountOnlineCreditCard
1251499110741.61001000
24519349008931.51001000
339151194720111000000
43591009411212.72000000
53584591330412000001
63713299212140.4215500010
75327729171121.52000010
85024229394310.33000001
93510819008930.6210400010
103491809302318.93010000
1165391059471042.43000000
12295459027730.12000010
1348231149310623.83001000
145932409492042.52000010
15674111291741121001000
166030229505411.53000011
1738141309501044.7313410000
184218819430542.41000000
1946211939160428.13010000
205528219472010.52001001
215631259401540.9211100010
2257276390095323000010
23295629027711.2126000010
244418439132020.7116301000
2536111529552123.9115900001
264319299430530.519700010
274016839506440.23000000
2846201589006412.41000011
295630489453912.23000011
3038131199410413.32010111
315935359310611.2312200010
3240162994117122000010
335328419480120.6319300000
34306189133030.93000000
35315509403541.83000010
364824819264730.71000000
3759351219472012.91000001
385125719581411.4319800000
39421814194114353011110
403813809411540.7328500010
415732849267231.63001000
42349609412232.31000000
433271329001941.1241210010
443915459561610.71000010
4546201049406515.71000011
465731529472042.51000001
473914439501430.7215300010
4837121949138040.2321111111
495626819574724.53000001
504016499237311.81000001
5132889209340.72001010
5261371319472012.91000010
53306729400510.1120700000
5450261909024532.1324010010
55295449581910.23000010
56411713994022281000010
575530299400530.12001110
5856311319561621.23010000
59282939406520.21000000
603151889132024.5145500000
614924399040431.72001010
6247211259340715.7111201000
6342182290089111000000
6442173294523402000010
6547231059002423.31000000
6659351319136013.81000011
6762361059567022.8133600000
685323459512342313201000
694721609340732.11000011
705329209004540.21000010
7142181159133513.51000001
7253296993907412000010
73442013092007151000001
7441168594606143000011
752831359461123.31000001
763171359490143.82010111

注意:数据集中的编号(ID)和邮政编码(ZIP CODE)特征因为在分类模型中无意义,所以在数据预处理阶段将它们删除。

  1. 使用CART决策树对数据进行分类
  1. 使用留出法划分数据集,训练集:测试集为7:3。
# 使用留出法划分数据集,训练集:测试集为7:3
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
  1. 使用CART决策树对训练集进行训练
# 使用CART决策树对训练集进行训练,深度限制为10层
model = DecisionTreeClassifier(max_depth=10)
model.fit(X_train, y_train)

决策树的深度限制为10层,max_depth=10。

  1. 使用训练好的模型对测试集进行预测并输出预测结果模型准确度
# 使用训练好的模型对测试集进行预测
y_pred = model.predict(X_test)# 输出预测结果和模型准确度
accuracy = accuracy_score(y_test, y_pred)
print("模型准确度:", accuracy)
  1. 可视化训练好的CART决策树模型
# 可视化训练好的CART决策树模型
dot_data = export_graphviz(model, out_file=None,feature_names=X.columns,class_names=['0', '1'],filled=True, rounded=True,special_characters=True)
graph = graphviz.Source(dot_data)
graph.render("Universal_Bank_CART")  # 保存为PDF文件
  1. 安装graphviz模块

首先在windows系统中安装graphviz模块

32位系统使用windows_10_cmake_Release_graphviz-install-10.0.1-win32.exe

64位系统使用windows_10_cmake_Release_graphviz-install-10.0.1-win64.exe

注意:安装时使用下图中圈出的选项

安装完成后使用pip install graphviz指令在python环境中安装graphviz库。

  1. 使用graphviz模块可视化模型
# 可视化训练好的CART决策树模型
dot_data = export_graphviz(model, out_file=None,feature_names=X.columns,class_names=['0', '1'],filled=True, rounded=True,special_characters=True)
graph = graphviz.Source(dot_data)
graph.render("Universal_Bank_CART")  # 保存为PDF文件

完整代码:

# 导入所需的库
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.tree import export_graphviz
import graphviz# 读取数据集
data = pd.read_csv("universalbank.csv")# 数据预处理:删除无意义特征
data = data.drop(columns=['ID', 'ZIP Code'])# 划分特征和标签
X = data.drop(columns=['Personal Loan'])
y = data['Personal Loan']# 使用留出法划分数据集,训练集:测试集为7:3
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 使用CART决策树对训练集进行训练,深度限制为10层
model = DecisionTreeClassifier(max_depth=10)
model.fit(X_train, y_train)# 使用训练好的模型对测试集进行预测
y_pred = model.predict(X_test)# 输出预测结果和模型准确度
accuracy = accuracy_score(y_test, y_pred)
print("模型准确度:", accuracy)# 可视化训练好的CART决策树模型
dot_data = export_graphviz(model, out_file=None,feature_names=X.columns,class_names=['0', '1'],filled=True, rounded=True,special_characters=True)
graph = graphviz.Source(dot_data)
graph.render("Universal_Bank_CART6")  # 保存为PDF文件

相关文章:

机器学习算法应用——CART决策树

CART决策树(4-2) CART(Classification and Regression Trees)决策树是一种常用的机器学习算法,它既可以用于分类问题,也可以用于回归问题。CART决策树的主要原理是通过递归地将数据集划分为两个子集来构建决…...

Sqli-labs第五,六关

目录 首先找到他们的闭合方式 操作 总结: 第五关根据页面结果得知是字符型但是和前面四关还是不一样是因为页面虽然有东西。但是只有对于请求对错出现不一样页面其余的就没有了。这个时候我们用联合注入就没有用,因为联合注入是需要页面有回显位。如果…...

上海AI Lab开源首个可替代GPT-4V的多模态大模型

与开源和闭源模型相比,InternVL 1.5 在 OCR、多模态、数学和多轮对话等 18 个基准测试中的 8 个中取得了最先进的结果。 上海AI Lab 推出的 InternVL 1.5 是一款开源的多模态大语言模型 (MLLM),旨在弥合开源模型和专有商业模型在多模态理解方面的能力差距…...

Python教程:一文了解PageObject模式

PageObject 模式是一种用于测试自动化的设计模式,它将页面的功能和页面的实现分开,提高了代码的可维护性和可重用性。本文将从基础概念开始,逐步介绍 Python 中的 PageObject 模式,并提供详细的代码示例。 1. 什么是 PageObject 模…...

SpringBoot 启动时查询数据库数据,并赋值给全局变量

创建一个组件 AreaData import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.CommandLineRunner; import org.springframework.stereotype.Component;import java.u…...

【Python】selenium爬虫常见用法和配置,以及常见错误和解决方法

欢迎来到《小5讲堂》 这是《Python》系列文章,每篇文章将以博主理解的角度展开讲解。 温馨提示:博主能力有限,理解水平有限,若有不对之处望指正! 目录 前言无执行文件代码报错信息错误路径手动下载自动下载 选项配置Ch…...

minio上传文件失败如何解决

1. 做了什么操作 通过接口上传excel文件,返回响应值 2. 错误如图 2. 如何解决 根据错误描述定位到了部署minio的地方minio通过docker部署,找到docker - compose发现配置文件中minio有两个端口,一个是用于api的,一个是用于管理界面…...

Java自动化测试框架--TestNG详解

一. 什么是TestNG TestNG是一个开源的自动化测试框架&#xff0c;它受JUnit和NUnit启发&#xff0c;其中“NG”即表示Next Generation&#xff0c;其功能更强大使用更方便。 二. TestNG配置 2.1 POM文件配置 在maven工程的pom.xml文件中加入以下依赖&#xff1a; <depe…...

【分布式 | 第五篇】何为分布式?分布式锁?和微服务关系?

文章目录 5.何为分布式&#xff1f;分布式锁&#xff1f;和微服务关系&#xff1f;5.1何为分布式&#xff1f;5.1.1定义5.1.2例子5.1.3优缺点&#xff08;1&#xff09;优点&#xff08;2&#xff09;缺点 5.2何为分布式锁&#xff1f;5.2.1定义5.2.2必要性 5.3区分分布式和微服…...

JavaScript百炼成仙自学笔记——13

函数七重关之六&#xff08;“new”一个函数&#xff09; 看个代码&#xff1a; function hello(){console.log(this); } 1、this&#xff1a;也是JavaScript中的一个关键字&#xff0c;永远指向当前函数的调用者 解释一下,有两层意思&#xff1a; ①this要嘛不出现&#…...

【skill】小米10让app永驻后台

小米10&#xff08;国行&#xff09;&#xff0c; 8128不能让app驻留后台我也忍了&#xff0c;但是12256依然如此&#xff0c;各种尝试&#xff0c;全网检索不杀app的方法&#xff0c;除了在系统设置里调&#xff0c;什么adb、shizuku冰箱冰柜的没一个能用 系统版本试过国行版…...

《架构风清扬-Java面试系列第29讲》聊聊DelayQueue的使用场景

DelayQueue是BlockingQueue接口的一个实现类之一 这个属于基础性问题&#xff0c;老规矩&#xff0c;我们将从使用场景和代码示例来进行讲解 来&#xff0c;思考片刻&#xff0c;给出你的答案 1&#xff0c;使用场景 实现&#xff1a;延迟队列&#xff0c;其中元素只有在其预定…...

说说SpringBoot自动配置原理

Spring Boot的自动配置原理可以概括为&#xff1a;通过读取jar包中的配置信息&#xff0c;并根据项目依赖和条件注解自动配置应用程序所需的bean&#xff0c;从而减少手动配置的工作量。 第一、代码入口 SpringBootApplication &#x1f447; EnableAutoConfiguration &#…...

bash: docker-compose: 未找到命令

bash: docker-compose: 未找到命令 在一台新的服务器上使用 docker-compose 命令时&#xff0c;报错说 docker-compose 命令找不到&#xff0c;在网上试了一些安装方法&#xff0c;良莠不齐&#xff0c;所以在这块整理一下&#xff0c;如何正确快速的安装 docker-compose cd…...

linux 权限和权限的设置

在Linux中&#xff0c;文件和目录的权限是一个重要的安全特性。这些权限决定了哪些用户可以读取、写入或执行某个文件或目录。以下是关于Linux权限和如何设置它们的基本信息。 权限类型 Linux中有三种基本的权限类型&#xff1a; 读取&#xff08;r&#xff09;&#xff1a;…...

基于Springboot的旅游管理系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的旅游管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&…...

springboot3项目练习详细步骤(第一部分:用户业务模块)

目录 环境准备 用户模块 注册 注册接口文档 ​编辑 实现结构 Spring Validation 登录 登录的接口文档 实现登录逻辑 JWT令牌 完善登录认证 拦截器 获取用户详细信息 接口文档 Usercontroller类中编写方法接口 忽略属性返回 优化代码ThreadLocal 更新用户基本信…...

推荐算法顶会论文博客笔记合集

小小挖掘机学习笔记 https://mp.weixin.qq.com/s/rp2xXueEyT8IKvTr2Qss3A 推荐系统学习笔记 https://blog.csdn.net/wuzhongqiang/category_10128687.html SIGIR SIGIR 2022 | 推荐系统相关论文分类整理&#xff1a;8.74 https://mp.weixin.qq.com/s/vH0qJ-jGHL7s5wSn7Oy…...

DRM/RESP无法连接linux上redis的原因

问题一&#xff1a; redis.conf配置文件 进入到自己的redis软件目录 vim redis.conf 将bind 127.0.0.1 : 1 注释掉&#xff0c;改成bind 0.0.0.0&#xff0c;让远程所有ip都可以访问 将daemonize yes 守护进程&#xff0c;修改后可在后台运行 protected-mod…...

vim怎么选中多行后在头部插入#(随手记)

方法1 进入可视行模式&#xff1a; 按下 V&#xff08;大写 V&#xff09;&#xff0c;选中整行&#xff0c;包括行尾空白字符。使用 v&#xff08;小写 v&#xff09;&#xff0c;然后移动光标选择从行中间开始的多行。 插入 #&#xff1a; 选中多行后&#xff0c;使用 I&…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...