互相关延时估计 Matlab仿真
文章目录
- 互相关延时估计
- 什么是互相关延时估计?
- 原理
- 代码实现
- 总结
互相关延时估计
互相关延时估计是一种信号处理技术,用于计算两个信号之间的时间延迟。在本篇博客中,我们将使用MATLAB来实现互相关延时估计,并提供多个例子和代码,以帮助更好地理解该技术。
什么是互相关延时估计?
互相关延时估计是通过比较两个信号的相似性来计算它们之间的时间延迟。在信号处理中,时间延迟是指一个信号相对于另一个信号的延迟时间。互相关延时估计在许多领域中都有广泛应用,包括语音识别、音频处理、图像处理等。
原理
当计算互相关函数时,可以将其中一个信号向右移动kkk个样本,然后将该信号与另一个信号的每个样本相乘并求和。最后,将计算的结果作为互相关函数的值。
举一个简单的例子来说明如何计算互相关函数。假设我们有两个信号 x={1,2,3}x = \{1, 2, 3\}x={1,2,3} 和 y={2,1,1}y = \{2, 1, 1\}y={2,1,1}。我们想要计算这两个信号之间的互相关函数。根据互相关函数的定义,我们可以得到:
Rxy(k)=∑n=−∞∞x(n)y(n−k)R_{xy}(k) = \sum_{n=-\infty}^{\infty}x(n)y(n-k)Rxy(k)=n=−∞∑∞x(n)y(n−k)
我们可以通过手动计算互相关函数来理解它的计算过程。具体来说,我们可以将信号 xxx 向右移动 kkk 个样本,然后将其与信号 yyy 的每个样本相乘并求和。在这个例子中,我们手动计算得到这两个信号之间的互相关函数为 Rxy={7,3,1,0,0}R_{xy} = \{7, 3, 1, 0, 0\}Rxy={7,3,1,0,0}。其中,Rxy(0)R_{xy}(0)Rxy(0) 是互相关函数的最大值,对应于两个信号之间的最佳延迟。
在信号处理中,我们经常需要将两个信号进行比较。但是,由于信号可能会出现时间偏移,因此需要将信号进行时间同步,以便进行比较。这个时间偏移就是我们这里所说的延迟。延迟是指一个信号相对于另一个信号的时间偏移量。
在Matlab中,可以使用内置的xcorr函数来计算互相关函数。对于这个例子,我们可以使用以下代码计算互相关函数:
x = [1, 2, 3];
y = [2, 1, 1];
[corr, lag] = xcorr(x, y);
最后,corr向量中的最大值对应于延迟0,即两个信号之间没有延迟。而在这个例子中,我们手动计算得到的最大值是在延迟0的位置,与Matlab计算的结果相符。
因此,使用互相关函数进行延时估计可以帮助我们在信号处理中对信号进行时间同步,以便进一步处理。
代码实现
以下是一个简单的Matlab代码,用于计算两个信号之间的延迟:
% 生成两个信号
fs = 1000; % 采样频率
t = 0:1/fs:1; % 时间向量
x = sin(2*pi*50*t); % 50 Hz正弦波
y = sin(2*pi*50*t + pi/2); % 相位差为90度的50 Hz正弦波% 计算互相关函数
[corr, lag] = xcorr(x, y);% 找到延迟
[~,I] = max(abs(corr));
delay = lag(I);
delay_time = delay/fs; % 延迟时间% 显示结果
fprintf('Delay between x and y is %f seconds.', delay_time);% 绘制互相关函数图像
figure;
subplot(2,1,1);
plot(t, x, 'b', t, y, 'r');
xlabel('Time (s)');
ylabel('Amplitude');
title('Original Signals');
legend('Signal x', 'Signal y');subplot(2,1,2);
plot(lag, corr);
xlabel('Lag');
ylabel('Correlation');
title('Cross-Correlation of x and y');
运行结果:Delay between x and y is 0.005000 seconds.

在上面的代码中,我们生成了两个相位差为90度的50Hz正弦波。然后我们使用xcorr函数计算它们之间的互相关函数。xcorr函数返回两个参数:corr和lag。corr是互相关函数的值,lag是所有延迟值的向量。我们使用max函数找到互相关函数的峰值,并使用lag找到对应的延迟。为了得到实际延迟时间,我们将延迟样本数除以采样频率。
互相关函数的计算原理是:将一个信号延迟kkk个样本,然后将其与另一个信号的每个样本相乘并求和。这个过程在式子Rxy(k)=∑n=−∞∞x(n)y(n−k)R_{xy}(k) = \sum_{n=-\infty}^{\infty}x(n)y(n-k)Rxy(k)=∑n=−∞∞x(n)y(n−k)中表示。互相关函数的最大值对应于两个信号之间的最佳延迟。因此,我们可以使用互相关函数来估计两个信号之间的时间延迟。
除了上面的代码,我们还可以使用以下代码生成两个矩形波,并计算它们之间的延迟:
% 生成两个信号
fs = 1000; % 采样频率
t = 0:1/fs:1; % 时间向量
x = square(2*pi*50*t); % 50 Hz矩形波
y = square(2*pi*50*t + pi/2); % 相位差为90度的50 Hz矩形波% 计算互相关函数
[corr, lag] = xcorr(x, y);% 找到延迟
[~,I] = max(abs(corr));
delay = lag(I);
delay_time = delay/fs; % 延迟时间% 显示结果
fprintf('Delay between x and y is %f seconds.', delay_time);% 绘制互相关函数图像
figure;
plot(lag, corr);
xlabel('Lag');
ylabel('Correlation');
title('Cross-Correlation of x and y');
运行结果:Delay between x and y is 0.005000 seconds.

在上面的代码中,我们生成了两个相位差为90度的50Hz矩形波。然后我们使用xcorr函数计算它们之间的互相关函数。最后,我们找到互相关函数的峰值,并计算其对应的延迟。将延迟样本数除以采样频率,可以得到延迟时间。
此外,我们还可以使用以下代码生成两个噪声信号,并计算它们之间的延迟:
% 生成两个信号
fs = 1000; % 采样频率
t = 0:1/fs:1; % 时间向量
x = randn(size(t)); % 高斯白噪声
y = circshift(x, 100); % 将x向右移动100个样本% 计算互相关函数
[corr, lag] = xcorr(x, y);% 找到延迟
[~,I] = max(abs(corr));
delay = lag(I);
delay_time = delay/fs; % 延迟时间% 显示结果
fprintf('Delay between x and y is %f seconds.', delay_time);% 绘制互相关函数图像
figure;
plot(lag, corr);
xlabel('Lag');
ylabel('Correlation');
title('Cross-Correlation of x and y');
输出结果Delay between x and y is -0.100000 seconds.

在上面的代码中,我们生成了两个高斯白噪声信号。然后我们将其中一个信号向右移动了100个样本,并使用xcorr函数计算了它们之间的互相关函数。最后,我们找到互相关函数的峰值,并计算其对应的延迟。将延迟样本数除以采样频率,可以得到延迟时间。
总结
本教程介绍了如何使用互相关函数进行延时估计。我们使用Matlab进行了代码实现和仿真。通过本教程,我们希望读者了解互相关函数的原理和应用,并能够使用Matlab实现延时估计。
相关文章:
互相关延时估计 Matlab仿真
文章目录互相关延时估计什么是互相关延时估计?原理代码实现总结互相关延时估计 互相关延时估计是一种信号处理技术,用于计算两个信号之间的时间延迟。在本篇博客中,我们将使用MATLAB来实现互相关延时估计,并提供多个例子和代码&a…...
谷歌插件Fetch在不同页面之间Cookie携带情况详解
content script 和 script inject 表现情况 在碰到content script 注入和用script标签注入一样,即使服务端有写入Cookie到域名下在该tab标签应用下也不会被保存,所以在发送时也无法自动携带,所以通过content script和<script>这种方式…...
Vue学习笔记(8)
8.1 组件自定义事件 在 Vue 中,组件可以通过自定义事件来实现组件之间的通信。自定义事件可以让一个组件触发一个事件,并向其他组件传递数据。以下是自定义事件的实现步骤: 在组件中定义一个事件名:可以在组件中使用 $emit 方法来…...
知道一个服务器IP应该怎么进入
首先我是国内,访问国外的网站比如谷歌等,访问特别慢,有时候甚至登录不进去。现在知道了一个台湾或者国外的服务器应该怎么登录进去呢?知道服务器IP之后,你还需要知道服务器的远程端口帐号密码才能登录的。知道上面信息…...
【计算机基础】Socket IO
一、I/O 模型 一个输入操作通常包括两个阶段: 等待数据准备好从内核向进程复制数据 对于一个套接字上的输入操作,第一步通常涉及等待数据从网络中到达。当所等待数据到达时,它被复制到内核中的某个缓冲区。第二步就是把数据从内核缓冲区复…...
mingw编译opencv
我这里是msys2 这个是msys2的教程 https://blog.csdn.net/qq_39942341/article/details/105931335?ops_request_misc%257B%2522request%255Fid%2522%253A%2522167821146216800197067008%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&requ…...
数据结构(八)排序
一、排序的概念以及引用概念排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,…...
函数习题:用函数实现判断一个整数是否能被n整除
Description 输入一组整数,输入0结束(这组整数不包含0),输出其中能被n整除的所有整数之和(n为整数,不用考虑n为0的情况), n及这组整数均由键盘输入。首先输入n,再输入一…...
SAP 创建会计冲销凭证
“功能描述:根据传输过来数据创建会计冲销凭证,并返回消息和状态 *”---------------------------------------------------------------------- "“本地接口: *” IMPORTING *" VALUE(IW_ZTFKCX0010) TYPE ZTFKCX0010 *" EXP…...
Jetson(Ubuntu18.04)设备无法ping通百度能ping通局域网错误集合,(神奇的是这样的情况下Todesk等远程确没有问题)
一、.打开DNS,意思是取消注释添加114.114.114.114 ,文件如下 vim /etc/systemd/resolved.conf [Resolve] #DNS #FallbackDNS #Domains #LLMNRno #MulticastDNSno #DNSSECno #Cacheyes #DNSStubListeneryes然后重启服务sudo systemctl restart systemd-resolved.se…...
Spring的@Conditional注解
前言Conditional是Spring4新提供的注解,它的作用是按照一定的条件进行判断,满足条件给容器注册bean。Conditional的源码定义://此注解可以标注在类和方法上 Target({ElementType.TYPE, ElementType.METHOD}) Retention(RetentionPolicy.RUNTI…...
剑指 Offer 67 把字符串转换成整数
摘要 面试题67. 把字符串转换成整数 一、字符串解析 根据题意,有以下四种字符需要考虑: 首部空格: 删除之即可;符号位:三种情况,即 , − , 无符号";新建一个变量保存符号位࿰…...
【教学典型案例】18.开门小例子理解面向对象
目录一:背景介绍业务场景:业务分析:二:实现思路1、面向过程:2、面向对象(抽象、封装、继承、多态)3、面向对象(抽象、封装、继承、多态、反射)三:实现过程1、…...
Linux环境ENV的概念
一、基本概念 环境变量的含义:程序(操作系统命令和应用程序)的执行都需要运行环境,这个环境是由多个环境变量组成的。 按变量的周期划为永久变量和临时性变量2种: 永久变量:通过修改配置文件,…...
AcWing数据结构 - 数据结构在算法比赛中的应用(下)
目录 Trie树 Trie字符串统计 最大异或对 并查集 合并集合 连通块中点的数量 食物链 堆 堆排序 模拟堆 哈希表 模拟散列表 字符串哈希 Trie树 Trie字符串统计 思路: 设 idx索引用于构建树, 结点son[节点位置][节点分支指针],cnt[]记录单…...
基于嵌入式libxml2的ARM64平台的移植(aarch64)
由于libxml在移植过程中依赖于zlib的库文件,因此本节内容包含zlib(V1.2.13)的移植libxml2(V2.10.3)的移植两部分组成。 (一)zlib的移植(基于arm64) 1、在github上下载zlib的最新源码压缩包&am…...
8. 字符串转换整数 (atoi)
题目描述 给你一个 32 位的有符号整数 x ,返回将 x 中的数字部分反转后的结果。 如果反转后整数超过 32 位的有符号整数的范围 [−231, 231 − 1] ,就返回 0。 假设环境不允许存储 64 位整数(有符号或无符号)。 示例 1&#x…...
[Tomcat]解决IDEA中的Tomcat中文乱码问题
目录 1、IDEA 2、VM options 3、IDEA启动程序的存放目录 4、Tomcat 写在前面:此方法亲测有效!!! 1、IDEA 2、VM options 加上这两行: -Dfile.encodingUTF-8 -Dconsole.encodingUTF-8 3、IDEA启动程序的存放目录…...
python之dataclasses
一、场景 dataclasses模块提供了一种方便的方法来创建和管理数据对象 它可以帮助开发者更容易地创建简单的类,同时提供了一些实用的功能,例如自动实现__init__()、repr()、eq()等方法。 数据容器:如果您需要一个简单的类来存储一些数据&…...
【MapGIS精品教程】007:MapGIS投影变换案例教程
MapGIS投影变换,包括创建坐标系、定义投影、单点投影、类投影、批量投影。 文章目录 一、创建坐标系1. 创建高斯平面坐标系2. 创建阿尔伯斯投影二、定义投影三、投影变换1. 单点投影2. 类投影3. 批量投影一、创建坐标系 在MagGIS数据库中,有个空间参考系的文件夹,内置了常见…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...
