【机器学习300问】83、深度学习模型在进行学习时梯度下降算法会面临哪些局部最优问题?
梯度下降算法是一种常用的优化方法,用于最小化损失函数以训练模型。然而,在使用梯度下降算法时,可能会面临以下局部最优问题。
(一)非凸函数的局部极小值
问题描述:在复杂的损失函数中,如果目标函数是非凸函数,即存在多个局部最小值点,那么梯度下降有可能会在到达某个局部最小值后停止,而非全局最小值。这意味着找到的解决方案可能不是最优的。
解决思路:
- 增加随机性:通过引入随机性,例如使用随机初始化、随机梯度下降等方法,可以帮助模型跳出局部最小值,并有机会找到更优的解。
- 尝试不同初始值:进行多次训练,使用不同的初始点或不同的参数设置,以增加找到全局最小值的机会。
- 调整学习率:适当调整学习率的大小,使其能够更好地适应不同区域的变化,从而有机会跳出局部最小值。
- 使用动量法:动量法可以帮助模型在参数空间中更好地探索,有助于跳出局部最小值。
(二)鞍点问题
问题描述:在高维空间中,函数可能包含许多鞍点,这些点在某些方向上是局部最小值,在其他方向上是局部最大值。损失函数的梯度可能接近零,尽管当前位置不是极小值。这被称为鞍点。梯度下降在鞍点附近可能会非常缓慢地收敛,或者停滞不前,需要很长时间才能逃离这个区域。因为它同时感受到了下降和上升的方向。
解决思路:
- 增加动量:动量法可以帮助模型在参数空间中更好地探索,有助于跳过鞍点区域。
- 使用自适应学习率算法:如AdaGrad、RMSprop等,它们可以自适应地调整学习率,有助于模型逃离鞍点区域。
- 使用二阶优化算法:考虑使用二阶优化算法,如牛顿法、拟牛顿法等,它们利用二阶导数信息来指导搜索方向,有助于更好地处理鞍点问题。
(三)平台区域
问题描述:损失函数可能存在一些平坦的区域,其中梯度几乎为零。在这些区域内,梯度下降算法的学习速度会显著减慢,因为它依赖于梯度来指导搜索方向。梯度变化太微小,导致模型学习速度缓慢,很难快速逃离这些区域。
解决思路:
- 增加动量:动量法可以帮助模型在参数空间中更好地探索,有助于快速逃离平台区域。
- 使用自适应学习率算法:如AdaGrad、RMSProp等,它们可以自适应地调整学习率,有助于模型逃离平台区域。
- 进行正则化:添加正则化项有助于引导算法绕过平坦区,寻找到具有更好泛化能力的解。
- 调整学习率:适当调整学习率的大小,使其能够更好地适应不同区域的变化,从而有机会快速逃离平台区域。
相关文章:

【机器学习300问】83、深度学习模型在进行学习时梯度下降算法会面临哪些局部最优问题?
梯度下降算法是一种常用的优化方法,用于最小化损失函数以训练模型。然而,在使用梯度下降算法时,可能会面临以下局部最优问题。 (一)非凸函数的局部极小值 问题描述:在复杂的损失函数中,如果目…...
基于springboot的校园管理系统源码数据库
基于springboot的校园管理系统源码数据库 随着科学技术的飞速发展,社会的方方面面、各行各业都在努力与现代的先进技术接轨,通过科技手段来提高自身的优势,校园管理系统当然也不能排除在外。校园管理系统是以实际运用为开发背景,…...

图形网络的自适应扩散 笔记
1 Title Adaptive Diffusion in Graph Neural Networks(Jialin Zhao、Yuxiao Dong、Ming Ding、Evgeny Kharlamov、Jie Tang)【NIPS 2021】 2 Conclusion The neighborhood size in GDC is manually tuned for each graph by conductin…...
vue基础配置
vite.config.ts import { defineConfig } from vite import vue from vitejs/plugin-vue import path from "path"; //引入svg需要用到的插件 import { createSvgIconsPlugin } from vite-plugin-svg-icons //mock插件提供方法 import { viteMockServe } from vite-…...

C++基础中的存储类别
存储的类别是变量的属性之一,C语言定义了4种变量的存储类别,分别是auto变量、static变量、register变量和extern变量。以下重点介绍这几种类型。 一、auto变量 auto变量是C默认的存储类型。函数内未加存储类型说明的变量均被称为自动变量,即…...

【NPM】Nginx Proxy Manager 一键申请 SSL 证书,自动续期,解决阿里云SSL免费证书每3个月失效问题
文章目录 1、NPM 简介2、实战Step 1:环境搭建 也可以看作者安装笔记 Step 2:创建容器 2.1 在系统任意位置创建一个文件夹,此文档以~/nginx-proxy-manager为例。2.2 创建docker-compose.yaml2.3 启动NPM服务 Step 3:配置反向代理3…...

教你解决PUBG绝地求生游戏中闪退掉线无法重连回去的问题
《绝地求生》(PUBG),作为一款在全球范围内掀起热潮的战术竞技游戏,以其栩栩如生的战场环境和令人心跳加速的生存冒险博得了广大玩家的青睐。然而,一些玩家在经历了一场惊心动魄的对局后,却面临了一个不大不…...
24 Debian如何配置Apache2(4)LAMP+phpMyAdmin部署
作者:网络傅老师 特别提示:未经作者允许,不得转载任何内容。违者必究! Debian如何配置Apache2(4)LAMP+phpMyAdmin部署 《傅老师Debian小知识库系列之24》——原创 ==前言== 傅老师Debian小知识库特点: 1、最小化拆解Debian实用技能; 2、所有操作在VM虚拟机实测完成;…...
centos安装paddlespeech各种报错解决方案
背景 windows系统安装paddlespeech一路顺利 centos安装之前也是正常 今天centos再次安装各种报错,避免以后遇到浪费时间,记录下来,也给大家节约时间 报错 报错1 module numpy has no attribute complex. 解决方案 降低numpy # 1. 卸载当前numpy库 pip uninstall numpy…...

谈基于ATTCK框架的攻击链溯源
引言 网络安全在当今数字化时代变得尤为关键,而MITRE公司开发的ATT&CK框架则成为了安全专业人员的重要工具。ATT&CK是一种广泛使用的攻击行为分类和描述框架。其目的在于提供一个共同的语言,使安全专业人员能够更好地理解攻击者的行为和目标&…...
在Ubuntu下搭建自己的以太坊私有链
最近要对链及链上应用进行压测,为了方便操作及分析问题,就自己搭建了一个eth私链。当前版本安装官方指引发现有卡点,于是决定整理一个文档,为其他有需要的朋友提供便捷操作,节约时间。 一、环境配置 linux操作系统:Ubuntu 20.04.6 LTS (Focal Fossa) go version: go1…...
巩固学习4
python中函数逆置的几种方法 s input()for i in range(len(s)-1,-1,-1):#从最后一位开始,步长为-1print(s[i],end)用for语句循环逆置 s input() s list(s) n len(s) for i in range(n//2):s[i],s[n-1-i] s[n-1-i],s[i]#从中间反转字符串 res "".j…...

Conda安装rasterio报错
Conda安装rasterio报错 文章目录 Conda安装rasterio报错问题解决参考 问题 在conda环境中安装rasterio包之后,本来可以正常运行的,但是之后又重新安装了一个gdal,导致原来的引用rasterio的包的程序不可正常运行了 conda install rasterio c…...

linux安装 mysql
环境:centOS8 一、安装 1 安装wget库 sudo yum -y install wget 2. 安装 mysql 换yum源 亲测成功!!!!!! 换yum源 1.下载对应版本的repo文件 wget -O CentOS-Base.repo http://mirrors…...

暴力法解决最近对问题和凸包问题-实现可视化
目录 最近对问题 凸包问题 最近对问题 顾名思义就是采用蛮力法求出所有点之间的距离,然后进行比较找出第一个最近对,一个一个进行比较。 大概思路就是如图(每个圈代表一个数对) 第一个和其他四个比较 第二个和其他三个比较 …...

[Kubernetes] Rancher 2.7.5 部署 k8s
server: 192.168.66.100 master: 192.168.66.101 node1: 192.168.66.102 文章目录 1.rancher server 安装docker2.部署k8s3.kubeconfig4.测试集群 1.rancher server 安装docker 所有主机开通ipv4 vi /etc/sysctl.conf#加入 net.ipv4.ip_forward 1#配置生效 sysctl -prancher…...

码题杯 世界警察 思想:双指针
https://www.matiji.net/exam/brushquestion/4/4446/16A92C42378232DEB56179D9C70DC45C 双指针 思路是这样的,首先r指针向右走,如果r指针遇到了和l指针一样的,那么l指针就,一直加到r指针的位置,此时a[l]a[r]࿰…...

drawio 网页版二次开发(1):源码下载和环境搭建
目录 一 说明 二 源码地址以及下载 三 开发环境搭建 1. 前端工程地址 2. 配置开发环境 (1)安装 node.js (2)安装 serve 服务器 3. 运行 四 最后 一 说明 应公司项目要求,需要对drawio进行二次开发&…...
算法训练Day33 |● 509. 斐波那契数 ● 70. 爬楼梯 ● 746. 使用最小花费爬楼梯
509. 斐波那契数 class Solution { public:int fib(int n) {if(n<1) return n;int pre2 0;int pre1 1;int result 0;for(int i2; i<n; i ){result pre1pre2;pre2 pre1;pre1 result;}return result;} };参考文章:代码随想录- 509. 斐波那契数 70. 爬楼梯…...

【算法】滑动窗口——将x减到0的最小操作数
本节博客主要是讲的我解“将x减到0的最小操作数”这道题的思路历程,从最开始的想法到代码提交的详细记录,有需要借鉴即可。 目录 1.题目2.代码示例3.细节3.1left越界3.2特殊情况 4.总结 1.题目 题目链接:LINK 看题目意思是就是给你一个数X&…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...

Java后端检查空条件查询
通过抛出运行异常:throw new RuntimeException("请输入查询条件!");BranchWarehouseServiceImpl.java // 查询试剂交易(入库/出库)记录Overridepublic List<BranchWarehouseTransactions> queryForReagent(Branch…...

医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor
1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...