基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)
基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)
大家继续看 https://lilianweng.github.io/posts/2023-06-23-agent/的文档内容
第二部分:内存
记忆的类型
记忆可以定义为用于获取、存储、保留以及随后检索信息的过程。人脑中有多种记忆类型。
-
感觉记忆:这是记忆的最早阶段,提供在原始刺激结束后保留感觉信息(视觉、听觉等)印象的能力。感觉记忆通常只能持续几秒钟。子类别包括图像记忆(视觉)、回声记忆(听觉)和触觉记忆(触摸)。
-
短期记忆(STM)或工作记忆:它存储我们当前意识到的以及执行学习和推理等复杂认知任务所需的信息。短期记忆被认为具有大约 7 个项目的容量(Miller 1956)并持续 20-30 秒。
-
长期记忆(LTM):长期记忆可以存储相当长的时间信息,从几天到几十年不等,存储容量基本上是无限的。 LTM 有两种类型:
1、外显/陈述性记忆:这是对事实和事件的记忆,是指那些可以有意识地回忆起来的记忆,包括情景记忆(事件和经历)和语义记忆(事实和概念)。
2、 内隐/程序性记忆:这种类型的记忆是无意识的,涉及自动执行的技能和例程,例如骑自行车或在键盘上打字。
- 感觉记忆:作为原始输入的学习嵌入表示,包括文本、图像或其他形式;
- 短期记忆:作为情境学习。它是短且有限的,因为它受到 Transformer 有限上下文窗口长度的限制。
- 长期记忆:作为代理在查询时可以处理的外部向量存储,可通过快速检索进行访问。
最大内积搜索 (MIPS)
MIPS: Maximum Inner Product Search,MIPS
外部记忆可以缓解有限注意力广度的限制。标准做法是将信息的嵌入表示保存到向量存储数据库中,该数据库可以支持快速最大内积搜索(MIPS)。为了优化检索速度,常见的选择是近似最近邻 (ANN)算法返回大约前 k 个最近邻,以牺牲一点精度来换取巨大的加速。
用于快速 MIPS 的 ANN 算法的几种常见选择:
- LSH(Locality-Sensitive Hashing):它引入了一种哈希函数,使得相似的输入项以高概率映射到相同的桶,其中桶的数量远小于输入的数量。
- ANNOY (Approximate Nearest Neighbors Oh Yeah):核心数据结构是随机投影树,一组二叉树,其中每个非叶节点代表一个将输入空间分成两半的超平面,每个叶存储一个数据点。树是独立且随机构建的,因此在某种程度上,它模仿了哈希函数。 ANNOY 搜索发生在所有树中,迭代地搜索最接近查询的一半,然后聚合结果。这个想法与 KD 树非常相关,但更具可扩展性。
- HNSW (Hierarchical Navigable Small World) :它受到小世界网络思想的启发,其中大多数节点可以在少量步骤内被任何其他节点到达;例如社交网络的“六度分离”特征。 HNSW 构建这些小世界图的层次结构,其中底层包含实际数据点。中间的层创建快捷方式以加快搜索速度。执行搜索时,HNSW 从顶层的随机节点开始,导航至目标。当它无法靠近时,它会向下移动到下一层,直到到达最底层。上层中的每个移动都可能覆盖数据空间中的很长一段距离,而下层中的每个移动都可以细化搜索质量。
- FAISS(Facebook AI相似性搜索):它的运行假设是在高维空间中,节点之间的距离遵循高斯分布,因此应该存在数据点的聚类。 FAISS 通过将向量空间划分为簇,然后在簇内细化量化来应用向量量化。搜索首先使用粗量化来查找簇候选,然后进一步使用更精细的量化来查找每个簇。
- ScaNN(可扩展最近邻):ScaNN的主要创新是向量量化。它量化数据点到使得内积与原来的距离相似尽可能,而不是选择最接近的量化质心点。
大模型技术分享
《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座
模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战
Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战
1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。
解码Sora架构、技术及应用
一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。
二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。
相关文章:

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)
基于 LlaMA 3 LangGraph 在windows本地部署大模型 (三) 大家继续看 https://lilianweng.github.io/posts/2023-06-23-agent/的文档内容 第二部分:内存 记忆的类型 记忆可以定义为用于获取、存储、保留以及随后检索信息的过程。人脑中有多…...

python3如何安装bs4
在python官网找到beautifulsoup模块的下载页面,点击"downloap"将该模块的安装包下载到本地。 将该安装包解压,然后在打开cmd,并通过cmd进入到该安装包解压后的文件夹目录下。 在该文件目录下输入"python install setup.py&quo…...

docker容器技术篇:rancher管理平台部署kubernetes集群
rancher管理平台部署kubernetes集群 Rancher 是一个 Kubernetes 管理工具,让你能在任何地方和任何提供商上部署和运行集群。 Rancher 可以创建来自 Kubernetes 托管服务提供商的集群,创建节点并安装 Kubernetes,或者导入在任何地方运行的现…...

【计算机网络原理】初识网络原理和一些名词解释
˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如…...

车载电子电器架构 —— 关于bus off汇总
车载电子电器架构 —— 关于bus off汇总 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明…...
Linux函数
目录 一、脚本函数 1.1 创建函数 1.2 使用函数 二、函数返回值 2.1 默认的退出状态码 2.2 使用return命令 2.3 使用函数输出 三、在函数中使用变量 3.1 向函数传达参数 3.2 在函数中处理变量 四、数组变量和函数 4.1 向函数中传递数组 4.2 从函数中返回数组 五、函数…...

如何查看centos7中Java在哪些路径下
在 CentOS 7 上,你可以通过几种方式查找安装的 Java 版本及其路径。以下是一些常用的方法: 1. 使用 alternatives 命令 CentOS 使用 alternatives 系统来管理同一命令的多个版本。你可以使用以下命令来查看系统上所有 Java 安装的配置: su…...

信息安全-古典密码学简介
目录 C. D. Shannon: 一、置换密码 二、单表代替密码 ① 加法密码 ② 乘法密码 ③密钥词组代替密码 三、多表代替密码 代数密码 四、古典密码的穷举分析 1、单表代替密码分析 五、古典密码的统计分析 1、密钥词组单表代替密码的统计分析 2、英语的统计规…...
面试题 01.05. 一次编辑
字符串有三种编辑操作:插入一个英文字符、删除一个英文字符或者替换一个英文字符。 给定两个字符串,编写一个函数判定它们是否只需要一次(或者零次)编辑。 示例 1: 输入: first "pale" second "ple" 输出: True示例 2: 输入: first &qu…...

针对头疼的UDP攻击如何定制有效的防护措施
分布式拒绝服务攻击(Distributed Denial of Service)简称DDoS,亦称为阻断攻击或洪水攻击,是目前互联网最常见的一种攻击形式。DDoS攻击通常通过来自大量受感染的计算机(即僵尸网络)的流量,对目标…...

怎么制作流程图?介绍制作方法
怎么制作流程图?在日常生活和工作中,流程图已经成为我们不可或缺的工具。无论是项目规划、流程优化,还是学习理解复杂系统,流程图都能帮助我们更直观地理解和表达信息。然而,很多人可能并不清楚,其实制作流…...

棱镜七彩参编《网络安全技术 软件供应链安全要求》国家标准发布
据全国标准信息公共服务平台消息显示,《网络安全技术 软件供应链安全要求》(GB/T 43698-2024)国家标准已于2024年4月25日正式发布,并将于2024年11月1日正式实施。棱镜七彩作为主要编制单位之一参与该国家标准的编制,为…...

Keepalived实现LVS高可用
6.1 KeepalivedLVS集群介绍 Keepalived和LVS共同构建了一个高效的负载均衡和高可用性解决方案:LVS作为负载均衡器,负责在集群中的多个服务器间分配流量,以其高性能和可扩展性确保应用程序能够处理大量的并发请求;而Keepalived则作…...
【力扣】1089.复写零
原题链接:. - 力扣(LeetCode) 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 给你一个长度固定的整数数组 arr ,请你将该数组中出现的每个零都复写一遍,并将其余的元素向右平移。 注意:请不…...
Golang实践录:gin框架使用自定义日志模块
本文介绍在 Golang 的 gin 框架中使用自定义日志模块的一些方法。 背景 很早之前就实现并使用了自己封装的日志模块,但一直没有将gin框架内部的日志和日志模块结合。gin的日志都是在终端上打印的,排查问题不方便。趁五一假期,集中研究把此事…...
Django之配置数据库
一,创建项目 二,将项目的setting.py中的 DATABASES {default: {ENGINE: django.db.backends.sqlite3,NAME: BASE_DIR / db.sqlite3,} }替换成如下(以mysql为例) DATABASES {default: {ENGINE: django.db.backends.mysql,NAME: …...
Ajax 笔记02
01 jq中的ajax方法中的dataType属性 dataType属性的属性值有以下几种: xml 返回数据按照xml解析 json 返回的数据按照json代码解析 script 返回的数据按照js代码解析 text 把返回的数据按照普通文本解析 jsonp 跨域 json: javascript object notation(js对象简谱) json整体…...
【隧道篇 / WAN优化】(7.4) ❀ 03. WAN优化的原理 ❀ FortiGate 防火墙
【简介】相信对WAN优化感兴趣的人都会有疑问,WAN优化真的有作用吗?如果真的有作用,那是根据什么原理呢?让我们来更深入的了解一下。 客户端和服务器端 其实很多人在一开始看到WAN优化这个词,就自然的以为上网速度太慢&…...

网络爬虫概述与原理
网络爬虫概述与原理 网络爬虫简介狭义上理解功能上理解常见用途总结 网络爬虫分类通用网络爬虫聚焦网络爬虫增量网络爬虫深度网络爬虫 网络爬虫流程网络爬虫采集策略深度有限搜索策略广度优先搜索策略 网络爬虫简介 通过有效地获取网络资源的方式,便是网络爬虫。网…...

可视化实验三 Matplotlib库绘图及时变数据可视化
1.1 任务一 1.1.1 恢复默认配置 #绘图风格,恢复默认配置 plt.rcParams.update(plt.rcParamsDefault)#恢复默认配置 或者 plt.rcdefaults() 1.1.2 汉字和负号的设置 import matplotlib.pyplot as plt plt.rcParams["font.sans-serif"]"SimH…...
机器学习与深度学习14-集成学习
目录 前文回顾1.集成学习的定义2.集成学习中的多样性3.集成学习中的Bagging和Boosting4.集成学习中常见的基本算法5.什么是随机森林6.AdaBoost算法的工作原理7.如何选择集成学习中的基础学习器或弱分类器8.集成学习中常见的组合策略9.集成学习中袋外误差和交叉验证的作用10.集成…...
【Linux基础知识系列】第十三篇-Cron与定时任务管理
在Linux系统中,任务自动化是提高效率和确保服务连续性的关键。Cron是一个强大的定时任务管理工具,它允许用户设置定期执行的命令或脚本。通过Cron,用户可以自动化系统维护、备份、报告生成等多种任务。本文将详细介绍如何使用Cron工具创建和管…...

AWS API Gateway配置日志
问题 访问API Gateway接口出现了403问题,具体报错如下: {"message":"Missing Authentication Token"}需要配置AWS API Gateway日志,看请求过程是什么样子的。 API Gateway 先找到API Gateway的的日志角色,…...
【python基础知识】变量名和方法名的单下划线(_)和双下划线(__)总结
文章目录 1. 单下划线前缀(_variable 或 _method())2. 双下划线前缀(__variable 或 __method())3. 前后双下划线(__variable__ 或 __method__)4. 单下划线(_)单独使用总结 在 Python…...

AI大模型学习三十二、飞桨AI studio 部署 免费Qwen3-235B与Qwen3-32B,并导入dify应用
一、说明 Qwen3-235B 和 Qwen3-32B 的主要区别在于它们的参数规模和应用场景。 参数规模 Qwen3-235B:总参数量为2350亿,激活参数量为220亿。Qwen3-32B:总参数量为320亿。 应用场景 Qwen3-235B:作为旗舰模型&a…...
使用Python提取PDF元数据的完整指南
PDF文档中包含着丰富的元数据信息,这些信息对文档管理和数据分析具有重要意义。本文将详细介绍如何利用Python高效提取PDF元数据,并对比主流技术方案的优劣。 ## 一、PDF元数据概述 PDF元数据(Metadata)是包含在文档中的结构化信…...
MyBatis-Plus LambdaQuery 高级用法:JSON 路径查询与条件拼接的全场景解析
目录 1. 查询 JSON 字段中的特定值 2. 动态查询 JSON 字段中的值 3. 查询 JSON 数组中的值 4. 查询 JSON 字段中的嵌套对象 5. 结合其他条件查询 JSON 字段 6. 使用类型处理器简化 JSON 查询 6.1 创建自定义 JSON 类型处理器 6.2 在实体类中指定自定义类型处理器 示例…...

【Web应用】若依框架:基础篇17二次开发-项目名称修改-新建业务模块
文章目录 ⭐前言⭐一、课程讲解⭐二、自己手动实操⭐总结 标题详情作者JosieBook头衔CSDN博客专家资格、阿里云社区专家博主、软件设计工程师博客内容开源、框架、软件工程、全栈(,NET/Java/Python/C)、数据库、操作系统、大数据、人工智能、工控、网络、…...

【QT】使用QT帮助手册找控件样式
选择帮助—》输入stylesheet(小写)—》选择stylesheet—》右侧选择Qt Style Sheets Reference 2.使用CtrlF—》输入要搜索的控件—》点击Customizing QScrollBar 3.显示参考样式表–》即可放入QT-designer的样式表中...
Python 入门到进阶全指南:从语言特性到实战项目
一、Python 简介 Python 是一种高级、跨平台、解释型编程语言,以简洁语法和高可读性著称,既适合编程初学者快速入门,也能满足资深开发者的复杂需求。其核心特性与应用场景如下: 核心特性解析 解释型语言:无需编译即可…...