当前位置: 首页 > news >正文

【论文阅读笔记】Order Matters(AAAI 20)

个人博客地址

注:部分内容参考自GPT生成的内容

论文笔记:Order Matters(AAAI 20)

用于二进制代码相似性检测的语义感知神经网络

论文:《Order Matters: Semantic-Aware Neural Networks for Binary Code Similarity Detection》(AAAI 2020)

笔记参考:AAAI-20论文解读:基于图神经网络的二进制代码分析 | 腾讯科恩实验室官方博客 (tencent.com)

动机

传统方法通常使用图匹配算法,但这些方法慢且不准确。尽管基于神经网络的方法取得了进展(如Gemini),但它们每个基本块都是以人工选择特征的低维嵌入来表示的,通常不能充分捕获二进制代码的语义信息。其次,节点的顺序在表示二进制函数时起着重要作用,而以往的方法并没有设计提取节点顺序的方法。

另外,在Related Work中提到,(Zuo et al 2018) 使用的NLP模型也有缺点。他们通过修改编译器,在每个生成的汇编块中添加一个基本块特殊注释器,该注释器为每个生成的块注释一个唯一ID。这样,可以将来自同一源代码片段编译的两个基本块视为等效。获取相似块对是一个有监督的过程,不同操作系统或硬件架构需要训练不同的模型

方法

提出的模型

模型的输入是二进制代码函数的控制流图(CFGs),其中每个块是带有中间表示的token序列。在语义感知上,模型使用BERT预训练接受CFG作为输入,并预训练token嵌入和块嵌入。在结构感知上,使用带GRU更新函数的MPNN来计算图的语义和结构嵌入 g s s g_{ss} gss。在顺序感知上,采用CFG的邻接矩阵作为输入,并使用CNN来计算图的顺序嵌入 g o g_{o} go。最后将它们连接起来,并使用一个MLP层来计算图嵌入 g f i n a l = M L P ( [ g s s , g o ] ) g_{final} =MLP([g_{ss}, g_{o}]) gfinal=MLP([gss,go])

image-20240121203627839

语义感知模块 (Semantic-aware Modeling)

使用BERT进行预训练,包括四个任务:掩码语言模型任务(MLM)、邻接节点预测任务(ANP)、块内图任务(BIG)和图分类任务(GC)。这些任务帮助模型提取CFG的token级别、块级别和图级别的语义信息。

image-20240121204851147

  • 掩码语言模型任务(MLM):通过在输入层掩盖token并在输出层预测它们来提取块内的语义信息。这是一个自监督任务,模型在训练过程中某些token会被隐藏,模型必须基于其他token提供的上下文来预测缺失的token。
  • 邻接节点预测任务(ANP):因为块的信息不仅与块本身的内容相关,还与其邻近的块相关,ANP任务旨在让模型学习这种邻接信息。它涉及提取图中所有相邻块对,并在同一图中随机抽样多个块对,以预测它们是否相邻。
  • 图内块任务(BIG):与ANP类似,BIG任务旨在帮助模型判断两个节点是否存在于同一图中。它涉及随机抽样可能在同一图中或不在同一图中的块对,并预测它们的关系。这有助于模型理解块与整个图之间的关系
  • 图分类任务(GC):使模型能够基于不同平台、架构或优化选项来分类块,特别是在不同编译条件下。GC任务要求模型区分由于这些不同条件而产生的图和块信息的差异
结构感知模块 (Structural-aware Modeling)

使用消息传递神经网络(MPNN)结合GRU(门控循环单元)更新函数,以提取CFG的全图语义和结构嵌入(the whole graph semantic & structural embedding) g s s g_{ss} gss

image-20240121215922638
  • 消息传递(Message Passing)

    • 公式(2)表示的是消息传递阶段。对于图中的每个节点v,它计算了节点v在时间t+1的消息 m v t + 1 m^{t+1}_v mvt+1。这个消息是通过聚合节点v的所有邻居节点w的信息(使用消息函数M)来得到的。这里, h v t h^t_v hvt h w t h^t_w hwt分别代表节点v和它的邻居节点w在时间t的嵌入,而 e v w e_{vw} evw是节点v和w之间边的特征。
    • 公式(5)中,论文使用了多层感知机(Multi-Layer Perceptron, MLP)对邻居节点w的嵌入 h w t h^t_w hwt进行处理。
  • 更新(Update)

    • 公式(3)表示的是更新阶段。在这一步中,节点v的新嵌入 h v t + 1 h^{t+1}_v hvt+1是通过更新函数U,结合节点v在时间t的嵌入和它在时间t+1收到的消息来计算的。

    • 公式(6)说明了论文中的更新函数是通过GRU实现的,GRU考虑了节点的历史信息 h v t h^t_v hvt和新的消息 m v t + 1 m^{t+1}_v mvt+1,来学习图的时序信息。

  • 读出(Readout)

    • 公式(4)定义了读出函数R,它计算 g s s g_{ss} gss。这是通过对图中所有节点v的最终嵌入 h v T h^T_v hvT进行聚合来实现的。
    • 公式(7)中,读出函数是通过对所有节点的初始嵌入 h v 0 h^0_v hv0和最终嵌入 h v T h^T_v hvT使用多层感知机(MLP)并进行求和来实现的。这里 h v 0 h^0_v hv0是由BERT预训练得到的初始块嵌入。
image-20240121220012016
顺序感知模块 (Order-aware Modeling)

通过卷积神经网络(CNN)处理邻接矩阵,以提取CFG节点的顺序信息。

image-20240122001434356

如图,CNN能捕获从(a)到(b)的变化信息,当 CNN 看到大量训练数据时,它具有平移不变性(translation invariance)

对于(b)->©,与图像放缩类似,在看到足够多的训练数据后,CNN 也可以学习这种伸缩不变性(scale invariance)。

由于二进制代码函数在不同平台上编译时节点顺序通常不会大改变,CNN能够处理由此引起的添加、删除或交换节点等小变化,优势如下:

  1. 使用CNN直接在邻接矩阵上的操作相比于传统的图特征提取算法要快得多。
  2. CNN可以处理不同大小的输入,这允许模型处理不同大小的图而无需预处理,如填充或裁剪。

使用具有 3 个残差块的 11 层 Resnet,所有的feature map大小均为3*3,最后使用最大池化层来计算图的顺序嵌入 g o = M a x p o o l i n g ( R e s n e t ( A ) ) g_o = Maxpooling(Resnet(A)) go=Maxpooling(Resnet(A))

效果

数据集:

  • 任务1是跨平台二进制代码检测,目的是确认相同的源代码在不同平台上编译成的CFG是否具有较高的相似性得分。

    • 与Gemini模型类似,使用孪生网络(siamese network)来减少损失,并使用余弦距离来计算图的相似性。
  • 任务2是图分类,对图嵌入进行优化选项分类

    • 使用softmax函数并选择交叉熵作为损失函数

由于模型具有三个组成部分:语义感知、结构感知和顺序感知,因此进行了不同的实验来找出每个部分的效果。

image-20240122012435397image-20240122012444904

表中:

  • 第一个分块是整体模型,包括graph kernel,Gemini以及MPNN模型。

  • 第二个分块是语义感知模块的对比实验,分别使用了word2vec[5],skip thought[6],以及BERT,其中BERT2是指原始BERT论文中的两个task(即MLM和ANP),BERT4是指在此基础上加入两个graph-level task(BIG和GC)。

  • 第三个分块是对顺序感知模块的对比实验,基础CNN模型使用3层CNN以及7、11层的Resnet,CNN_random是对训练集中控制流图的节点顺序随机打乱再进行训练,MPNN_ws是去除控制流图节点中的语义信息(所有block向量设为相同的值)再用MPNN训练。

  • 最后是本文的最终模型,即BERT (4 tasks) + MPNN + 11layer Resnet。

MPNN (即加上结构感知模块)在所有数据集上都优于 Gemini,这是因为 GRU 更新函数可以存储更多信息,因此在所有其他模型中都使用 MPNN。

基于NLP的块预训练特征比手动特征好得多,并且顺序感知模块在两个任务上也有很好的结果。

在跨平台二进制代码检测任务中,语义信息比顺序信息更有用。不同的CFG可能具有相似的节点顺序,因此仅使用节点顺序信息是不够的。

最后,最终模型优于所有其他模型。

分开观察各个模块的有效性

image-20240122014527423 image-20240122014536191

“语义感知(Semantic-aware)”:

  • 表中的第二块显示,BERT模型的性能优于word2vec和skip thought模型。这是因为BERT在预训练过程中不仅考虑了块级别的预测,还包括了token级别的预测,并且双向Transformer结构能够提取更多有用的信息。
  • 当BERT模型加入了BIG和GC两个图级任务后,性能有了1%到2%的提升,表明引入图级任务对预训练是有益的。
  • 图6展示了4个控制流图(CFG)的块嵌入可视化,使用K-means算法将预训练后的块嵌入分成四个类别,每个类别用不同颜色表示。从图中可以观察到,同一控制流图中的块倾向于拥有相同的颜色,而不同控制流图的主要颜色也不同。

“顺序感知(Order-aware)”:

  • 表中的第三块显示,基于CNN的模型在两个任务上都取得了良好的效果,其中11层的Resnet略优于3层的CNN和7层的Resnet。
  • 与不含语义信息的MPNN(MPNN_ws)相比,基于CNN的模型表现出更好的性能。
  • 节点顺序被随机打乱后,CNN的效果显著下降,这证明CNN模型确实能够学习到图的节点顺序信息。
  • 图7展示了两个由相同源代码编译而成的CFG变化的例子,尽管左图的节点3在右图中被分成了节点3和4,但其他节点的顺序和边的连接方式保持不变。通过CNN模型的计算,这两个CFG的余弦相似度为0.971,并且在整个平台中的代码检测排名中位列第一。这意味着CNN模型能够从邻接矩阵中有效提取控制流图的节点顺序信息,与假设相符。

结论

这篇论文提出了一个新颖的二进制代码图学习框架,包含了语义感知组件、结构感知组件和顺序感知组件。作者观察到,语义信息和节点顺序信息对于表示控制流图(CFGs)都非常重要。为了捕捉语义特征,作者提出了针对CFGs块的BERT预训练,包括两个原始任务MLM和ANP,以及两个额外的图级任务BIG和GC。然后作者使用MPNN来提取结构信息。作者进一步提出了一个基于CNN的模型来捕捉节点顺序信息。作者在两个任务上使用了四个数据集进行了实验,实验结果表明本文提出的模型超越了当时最先进的方法。

附:部分基础概念解释

由于是第一次精读深度学习相关的技术论文,我翻看了很多基础概念

MLM和NSP

MLM(Masked language model)和NSP(next sentence prediction)是BERT模型中两个重要的训练任务,它们共同帮助BERT学习理解语言的深层次结构和关系。以下是对这两个任务的具体介绍:

掩码语言模型任务(MLM)

  • 目的:MLM旨在使模型能够更好地理解语言本身的规律和结构。它通过在文本中随机掩盖一些单词(即使用特殊的“[MASK]”标记替换),然后要求模型预测这些掩盖单词的原始值来实现。
  • 训练过程:在训练时,BERT模型会尝试根据上下文中的其他单词来猜测被掩盖的单词是什么。例如,在句子“The cat sat on the [MASK]”中,模型需要预测被掩盖的词是“mat”。
  • 作用:这种训练方式使得BERT能够有效地学习单词的上下文关系和语义信息,从而更好地理解语言。

下一个句子预测任务(NSP)

  • 目的:NSP的目标是使模型能够理解句子之间的关系。这对于很多NLP任务(如问答系统、自然语言推理等)至关重要。
  • 训练过程:在训练时,模型被给予一对句子,并需要判断第二个句子是否在原文中紧跟在第一个句子之后。训练集由两种类型的句子对组成:一种是真实的相邻句子对,另一种是随机组合的非相邻句子对。
  • 作用:通过这种方式,BERT学习理解句子之间的逻辑和关系,增强对文本的整体理解能力。
消息传递神经网络(MPNN)

消息传递神经网络(Message Passing Neural Network)是一类图神经网络,它通过在图的节点之间交换信息来学习节点的表示。它们基于以下步骤工作:

  1. 消息传递:每个节点接收其邻居节点的信息,并根据这些信息生成“消息”。
  2. 聚合:将所有接收到的消息聚合成单个表示,这可以通过不同的函数实现,如求和、求平均或更复杂的操作。
  3. 更新:使用聚合的信息来更新节点的状态。

MPNN的核心思想是通过迭代这些步骤来精炼每个节点的表示,从而捕捉图的结构特征和节点之间的关系。

门控循环单元(GRU)

GRU(gated recurrent unit)是循环神经网络(RNN)的一种变体,用于处理序列数据。与传统的RNN相比,GRU通过引入门控机制来解决梯度消失和梯度爆炸的问题,使得网络能够捕捉长距离依赖关系。GRU包含两个门:

  1. 更新门:决定状态信息应该如何更新。
  2. 重置门:决定过去的状态信息在计算新状态时应保留多少。

在每个时间步,GRU可以选择保留旧状态的信息并融入新输入的信息,这使得它在处理具有复杂依赖结构的数据时非常有效。

多层感知机 (MLP)
  • 定义:多层感知机是一种基础的人工神经网络,由一个输入层、若干隐藏层和一个输出层组成。每一层由多个神经元组成,相邻层之间的神经元通过权重连接。
  • 功能:MLP主要用于分类和回归问题,能够识别和建模输入数据中的非线性关系。
  • 工作原理:在MLP中,数据从输入层进入,每个神经元对输入进行加权求和,再加上一个偏置项,最后通过激活函数进行非线性转换。这个过程在每个隐藏层中重复进行,直到输出层。在输出层,数据被转换为最终的输出格式(如分类标签或回归值)。
卷积神经网络 (CNN)
  • 定义:卷积神经网络是一种深度学习网络,特别适用于处理具有网格结构的数据,如图像(2D网格)和声音(1D网格)。
  • 功能:CNN广泛应用于图像和视频识别、图像分类、医学图像分析、自然语言处理等领域。
  • 工作原理:CNN通过一系列卷积层、池化层和全连接层处理数据。卷积层使用卷积核提取空间特征,池化层(如最大池化)则减小特征维度并提供一定程度的位置不变性。最后,全连接层将提取的特征用于分类或回归任务。
最大池化 (MaxPooling)
  • 定义:最大池化是一种池化操作,常在卷积神经网络中使用,用于减小特征图的空间尺寸。
  • 功能:最大池化通过降低参数数量和计算量来减少过拟合,同时保持重要特征。
  • 工作原理:最大池化通过在输入特征图的不同区域上应用一个固定大小的窗口,并从每个窗口中选择最大值来实现。这样做可以提取最显著的特征,并且对小的位置变化保持不变性。
残差网络 (ResNet)
  • 定义:ResNet是一种深度卷积神经网络,通过引入残差学习框架来易于优化,并能够构建更深的网络。
  • 功能:ResNet在图像识别、分类和其他计算机视觉任务中表现优异。
  • 工作原理:在ResNet中,残差块的引入允许输入跳过一些层。每个残差块学习输入和输出的残差(差异),而不是直接学习输出。这帮助网络学习恒等映射,解决了深层网络中的梯度消失问题。

相关文章:

【论文阅读笔记】Order Matters(AAAI 20)

个人博客地址 注:部分内容参考自GPT生成的内容 论文笔记:Order Matters(AAAI 20) 用于二进制代码相似性检测的语义感知神经网络 论文:《Order Matters: Semantic-Aware Neural Networks for Binary Code Similarity Detection》…...

中科院突破:TalkingGaussian技术实现3D人脸动态无失真,高效同步嘴唇运动!

DeepVisionary 每日深度学习前沿科技推送&顶会论文分享,与你一起了解前沿深度学习信息! 引言:探索高质量3D对话头像的新方法 在数字媒体和虚拟互动领域,高质量的3D对话头像技术正变得日益重要。这种技术能够在虚拟现实、电影…...

fastText-文本分类

fastText介绍 fastText是一个快速文本分类算法,与基于神经网络的分类算法相比有两大优点: 1、fastText在保持高精度的情况下加快了训练速度和测试速度 2、fastText不需要预训练好的词向量,fastText会自己训练词向量 3、fastText两个重要的优化:Hierarchical Softmax、N-gr…...

【nodejs 命令行交互神器 - inquirer.js】

需求 大家在开发时,有时需要从命令行读取用户的输入,或者让用户选择。在nodejs中,这个怎么实现? 原生实现 ❌ process.stdin.setEncoding(utf8);process.stdin.on(readable, () > {let chunk;// 使用循环确保我们读取所有的可用输入wh…...

Liunx软件包管理(上)

目录 一.前言 二.rpm RPM 包的结构 安装与升级 卸载 查询 验证 信息输出 三.yum Yum 的特点 安装和卸载 查询和信息 仓库管理 维护和调试 常用选项 四.更换镜像源 常用的镜像源 更换镜像源基础操作 一.前言 Linux 的软件包管理是指在 Linux 操作系统中安…...

华为eNSP中型企业局域网网络规划设计(下)

→b站传送门,感谢大佬← →华为eNSP中型企业局域网网络规划设计(上)← →拓扑图传送门,可以自己配置着玩← 配置ospf AR3 [AR3]ospf 1 router-id 3.3.3.3 //出口默认路由 [AR3-ospf-1]default-route-advertise always #area…...

C语言(指针)1

Hi~!这里是奋斗的小羊,很荣幸各位能阅读我的文章,诚请评论指点,关注收藏,欢迎欢迎~~ 💥个人主页:小羊在奋斗 💥所属专栏:C语言 本系列文章为个人学习笔记&#x…...

perl:用 MIDI::Simple 生成midi文件,用 pygame 播放 mid文件

在 csdn.net 下载 strawberry-perl-5.32.1.1-64bit.zip 解压安装在 D:\Strawberry\ 运行 cpan install MIDI::Simple D:\Strawberry\c\bin\gmake.exe test -- OK Running make install for CONKLIN/MIDI-Perl-0.84.tar.gz Installing D:\Strawberry\perl\site\lib\MIDI.pm I…...

数据库-脏读

脏读(Dirty Read)是数据库并发控制中的一个概念,指的是一个事务读取了另一个尚未提交的事务的修改。由于另一个事务的修改可能最终会被撤销(即发生回滚操作),因此,当前事务读取到的数据可能是“…...

react 用合计项

在React中,如果你想要计算一个数组中的所有项目,你可以使用reduce方法。这是一个JavaScript内置的数组方法,它允许你累计数组中的值。 以下是一个简单的React组件示例,它计算一个商品列表中所有商品的总价: import…...

IP 地址追踪工具促进有效的 IP 管理

网络 IP 地址空间的结构、扫描和管理方式因组织的规模和网络需求而异,网络越大,需要管理的 IP 就越多,IP 地址层次结构就越复杂。因此,如果没有 IP 地址管理(IPAM)解决方案,IP 资源过度使用和地…...

快手蓝V商家电话采集软件操作教程

抖音作为全球最受欢迎的短视频平台之一,拥有庞大的用户基础。其中不乏拥有蓝V认证的大V用户,他们的手机号码对于一些市场营销人员来说是非常有价值的。但是,抖音并没有公开这些大V用户的手机号码,怎样采集到他们的手机号码呢&…...

工业机器人应用实践之玻璃涂胶(篇二)

工业机器人 接上篇文章,浅谈一下实践应用,具体以玻璃涂胶为例: 了解工业机器人在玻璃涂胶领域的应用认识工具坐标系的标定方法掌握计时指令的应用掌握人机交互指令的应用掌握等待类指令用法(WaitDI、WaitUnitl 等)认…...

C++ 455. 分发饼干

文章目录 一、题目描述二、参考代码 一、题目描述 示例 1: 输入: g [1,2,3], s [1,1] 输出: 1 解释: 你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。 虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩…...

未来娱乐新地标?气膜球幕影院的多维体验—轻空间

在中国,一座独特的娱乐场所正在崭露头角:气膜球幕影院。这个融合了气膜建筑与激光投影技术的创新场所,不仅令人惊叹,更带来了前所未有的科幻娱乐体验。让我们一起探索这个未来的娱乐空间,感受其中的多维魅力。 现场演出…...

工业机器人应用实践之玻璃涂胶(篇三)

工业机器人 接上篇文章,浅谈一下实践应用,具体以玻璃涂胶为例: 了解工业机器人在玻璃涂胶领域的应用 认识工具坐标系的标定方法 掌握计时指令的应用 掌握人机交互指令的应用 掌握等待类指令用法(WaitDI、WaitUnitl 等&#xff0…...

基于Huffman编码的字符串统计及WPL计算

一、问题描述 问题概括: 给定一个字符串或文件,基于Huffman编码方法,实现以下功能: 1.统计每个字符的频率。 2.输出每个字符的Huffman编码。 3.计算并输出WPL(加权路径长度)。 这个问题要求对Huffman编码算…...

处理VS2022中(C/C++)scanf报错问题(3种)

#pragma warning(disable:4996)//第一种&#xff1a;处理scanf在VS2022中报错 #define _CRT_SECURE_NO_WARNINGS//第二种:处理scanf在VS2022中报错 #include<bits/stdc.h> using namespace std; int main() { int a, b; scanf(“%d %d”, &a, &b);//第三种&…...

C#面:Session 喜欢丢值且占内存,Cookis不安全,请问 C# 可以用什么办法代替这两种原始的方法

可以使用 用 ViewState&#xff0c;stateserver。 在 C# 中&#xff0c;ViewState、StateServer 和 Session 都是用于在 Web 应用程序中存储和管理状态信息的机制。它们可以用来在不同的页面之间传递数据或者在同一页面的不同请求之间保持数据的持久性。 ViewState&#xff1…...

Python并发编程 05 锁、同步条件、信号量、线程队列、生产者消费者模型

文章目录 一、基础概念二、同步锁三、线程死锁和递归锁四、同步条件&#xff08;event&#xff09;五、信号量六、线程队列&#xff08;queue&#xff09;1、常用方法2、queue模块的三种模式&#xff08;1&#xff09;FIFO队列&#xff08;2&#xff09;LIFO队列&#xff08;3&…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...